

LOW CARBON TRANSPORT IN ASIA

STRATEGIES FOR OPTIMIZING CO-BENEFITS

EDITED BY

Eric Zusman Ancha Srinivasan Shobhakar Dhakal

Low Carbon Transport in Asia

"This hugely important book arrives just in time. It is essential reading for those concerned about the future of our cities and vehicles. The authors tell us why strategies to reduce carbon emissions are the same strategies needed to create more livable, vibrant cities, and what to do about it."

Daniel Sperling, Director, Institute of Transportation Studies, University of California, Davis, USA

Developing Asia is at a crossroads. Over the next few decades, the region's policymakers could formulate transport strategies that promote fuel-efficient vehicles, modern public transport, and sustainable land-use planning or become locked into inefficient vehicles, energy-intensive infrastructure, and suburban sprawl. The path taken will have implications inside and outside Asia, and it will depend upon the extent to which co-benefits are incorporated into a range of decision-making processes.

Integrating co-benefits into transport decisions can help determine which policy options mitigate greenhouse gases (GHGs) while improving local air quality, commuting times, and energy security. Factoring in both climate change and development co-benefits can allay concerns over GHG mitigation costs or bring carbon finance to development needs. But it can also present decision-makers unaccustomed to optimizing multiple benefits with unique technical, financial, and institutional challenges. This book represents a pioneering effort to identify and remove these barriers, thereby making it easier for Asia to take the low carbon path.

The book's first section presents analytical frameworks to classify transport strategies with co-benefits, offering new findings on black carbon and dieselization. The second section grounds the analytic work in case studies on fuel switching in Pakistan, urban planning in Bandung, congestion charges in Beijing, vehicle restraints in Hanoi, and bus rapid transit in Jakarta. A final section examines how the future climate regime can enable low carbon transport in Asia.

This book is essential reading for policymakers, planners, and researchers concerned with transport, climate change, and development in Asia and the wider world.

Eric Zusman is a Senior Climate Policy Researcher at the Institute for Global Environmental Strategies (IGES) in Hayama, Japan

Ancha Srinivasan is a Principal Climate Change Specialist at the Asian Development Bank in Manila, Philippines

Shobhakar Dhakal is the Executive Director of the Global Carbon Project hosted by the National Institute for Environmental Studies (NIES) in Tsukuba, Japan

Low Carbon Transport in Asia

Strategies for optimizing co-benefits

Edited by Eric Zusman, Ancha Srinivasan and Shobhakar Dhakal

First published 2012 by Earthscan 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Simultaneously published in the USA and Canada by Earthscan

711 Third Avenue, New York, NY 10017

Earthscan is an imprint of the Taylor & Francis Group, an informa business

© 2012 Eric Zusman, Ancha Srinivasan, and Shobhakar Dhakal

The right of Eric Zusman, Ancha Srinivasan, and Shobhakar Dhakal to be identified as the authors of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data Zusman, Eric.

Low carbon transport in Asia: strategies for optimizing co-benefits / Eric Zusman, Ancha Srinivasan, Shobhakar Dhakal.

p. cm.

Includes bibliographical references and index.

1. Transportation-Asia. 2. Transportation-Environmental aspects-Asia. I. Srinivasan, Ancha. II. Dhakal, Shobhakar. III. Title.

HE268.A2Z87 2012

388.095—dc23 2011022984

ISBN: 978-1-84407-914-8 (hbk) ISBN: 978-1-84407-915-8 (pbk) ISBN: 978-0-203-15383-3 (ebk)

Typeset in Galliard by HWA Text and Data Management, London

Contents

	List of figures	V11
	List of tables	ix
	List of contributors	xi
	Foreword	xiv
	Preface	xvi
	Acknowledgements	xxii
	Abbreviations	xxiv
PAF	RT I	
lnt	roduction	1
1	Low carbon transport and co-benefits in Asia:	
	an overview	3
	ERIC ZUSMAN, ANCHA SRINIVASAN, AND SHOBHAKAR DHAKAL	
PAT	RT II	
	alytical frameworks	19
2	The co-benefits of transport policies in Asia:	
	a review of the literature	21
	DIEGO SILVA HERRAN AND NAOKO MATSUMOTO	
3	Maximising the co-benefits of light-duty dieselisation	
	in Asia	45
	RAY J. MINJARES AND DANIEL RUTHERFORD	
4	Reducing particulate matter emissions from buses and	
	trucks in Asia: a framework to assess air pollution and	
	climate change co-impacts	68
	CONOR C O REYNOLDS ANDREW P GRIESHOP AND MILIND KANDLIKAR	

_	T III e studies	95
5	Quantifying co-benefits from low carbon transport in Hanoi, Vietnam LEE SCHIPPER, WEI-SHIUEN NG, LE ANH TUAN, AND HANS OERN	97
6	Analyzing the co-benefits of transport policies in Hyderabad, India SARATH GUTTIKUNDA AND RAMANI KOPAKKA	119
7	The co-benefits of a city toll in Beijing: barriers and solutions FELIX CREUTZIG, ALAINNA THOMAS, DANIEL M. KAMMEN, AND ELIZABETH DEAKIN	135
8	Integrating land use, transport, energy, and the environment: the case of Bandung, Indonesia RANJITH PERERA AND ARIVA SUGANDI PERMANA	159
9	Enabling fuel switching in Pakistan: a case study of compressed natural gas HILAL A. RAZA, SYED SAFDAR ZAHEER, AND NASREEN FARAH	179
10	The co-benefits of Jakarta's Bus Rapid Transit: getting the institutions right HERU SUTOMO, JANE ROMERO, AND ERIC ZUSMAN	191
	T IV ernational initiatives and the way forward	211
11	Japan's approach to co-benefits: recognition, implementation, and evaluation KAZUHIKO TAKEMOTO, TOKUYA WADA, AND HIROFUMI AIZAWA	213
12	International climate change initiatives and low carbon transport in Asia: perspectives and prospects CORNIE HUIZENGA	225
13	Low carbon transport and co-benefits in Asia: the way forward ERIC ZUSMAN, ANCHA SRINIVASAN, AND SHOBHAKAR DHAKAL	244
	Index	263

Figures

0.1	Trends in world motor vehicle production	xvii
0.2	Production of cars, buses, and trucks in China	xviii
1.1	Growth in passenger cars in selected countries in Asia	5
1.2	Asia's growing dependence on imported oil	8
1.3	A low carbon transport path for developing Asia	9
1.4	Share of motorized private modes in major cities	11
2.1	Flowchart of co-benefits from the ASIF framework	23
2.2	Co-benefits plot for the case of Metro Manila	34
2.3	Implementation barriers for transport policies	
	in the ASIF framework	36
3.1	Percentage of cities in Asia reaching recommended air quality	
	standards	48
3.2	Associations of PM ₁₀ and mortality	49
3.3	Taxes and subsidies for diesel and petrol fuel in developing Asia	56
3.4	Percentage of petrol tax revenue lost in Asia	57
4.1	Particulate matter mass emissions standards for new	
	heavy-duty vehicles in different regions over time	74
4.2	Conceptual diagram of co-impacts framework for	
	emissions control policies	77
4.3	Qualitative illustration of the co-impacts framework for	
	assessing various particulate matter reduction options	85
5.1	Passenger kilometres by mode: 2005 and projected by	
	the HAIDEP study for 2020	105
5.2	Current and projected vehicle activity in Hanoi	107
5.3	Schematic diagram of the five scenarios developed in the study	108
5.4	Fuel use by vehicle mode and total CO ₂ emissions	112
5.5	CO ₂ intensity by modes across scenarios	113
6.1	Annual average air quality and vehicular population trends in	
	Hyderabad	120
6.2	Estimated average sectoral contributions in Hyderabad	122

viii List of figures

6.3	Percentage contribution of source sectors to annual emissions in 2006	123
6.4	Estimated contribution of PM ₁₀ and CO ₂ in transport	120
	emissions in 2006	123
7.1	Co-benefits of a city toll and with additional supply-side	
	measures	140
8.1	The nexus of land use, transport, energy use, and environment	160
8.2	Increased traffic volumes from land-use changes in the	
	Jalan A Yani region	163
9.1	Growth in natural gas vehicles	180
9.2	Growth of CNG Filling Stations	181
10.1	Ridership on Jakarta's BRT	196
10.2	Previous transport modes of Jakarta BRT riders	197
10.3	Comparing co-benefits on Jakarta BRT's Line 1	200
10.4	Changing institutional arrangements in the management of	
	TransJakarta	201
10.5	Difference in estimated and actual daily ridership	203
11.1	Illustrating a co-benefits approach	214
11.2	Three steps in a co-benefits approach	214
11.3	Subsidizing CDM projects with co-benefits	219
13.1	Key messages	245
13.2	Coordination game	252
13.3	Linking the UNFCCC and low carbon transport strategies	253
13.4	Research gaps and needs	254

Tables

0.1	Global warming potentials of transport pollutants	xviii
2.1	Summary of co-benefits of policies in the transportation sector	22
2.2	Policies organized by the ASIF framework	24
2.3	Co-benefits and barriers	28
2.4	Policy options in the Manila case study	32
2.5	Emissions reduction for different policy options	33
2.6	Barriers and stakeholders addressed by recommended	
	countermeasures	40
3.1	Estimated burden of disease due to air pollution in	
	developing Asia	50
3.2	Cost of air pollution as a percentage of GDP	51
3.3	Net difference in CO ₂ -equivalent emissions between	
	diesel and petrol vehicles in the European light-duty fleet	52
3.4	Weight and efficiency penalty with diesels	55
3.5	Kraftfahrt Bundesamt database vehicle characteristics	59
3.6	Effect of the diesel particulate filter on emissions of new	
	light-duty diesels in the 2007 European fleet	60
3.7	Targets of various fuel efficiency standards	61
4.1	Global warming/cooling potential for the components	
	of particulate matter	71
4.2	Summary of PM mitigation options for diesel-fuelled buses	
	and trucks in Asia	86
5.1	Transport demand by mode in Hanoi city and	
	adjoining districts	102
5.2	Average distance travelled per trip by mode and purpose	103
5.3	Distance travelled by passenger by mode in each scenario	106
5.4	Composite emission factors used in this study	111
6.1	Vehicular statistics utilized for emissions estimation in 2006	121
6.2	Estimated emissions inventory for Hyderabad in 2006	123

x List of tables

6.3	Summary of total emission reductions for the Hyderabad Air Pollution Action Plan (HAPAP)	125
6.4	Estimated emission reductions by 2020 for HAPAP	126
6.5	Estimated emission reductions by 2020 for Thirth. Estimation of health impacts based on modeling results for	120
0.0	control scenarios	127
7.1	Social costs and co-benefits of a city toll	139
7.2	The relationship between existing transportation policies and	
,	a city toll	150
7.3	Barriers, solutions, and stakeholders	152
8.1	Data for multivariate regression analysis on Jalan A Yani	
	collector road	163
8.2	Air pollutants from mobile sources at select points in Bandung	164
8.3	Summary of present land-use, transport and environment	
	policies	169
8.4	Recommended and implemented plans and policy instruments	
	(first phase)	172
8.5	Progressive plans and policy interventions (second phase)	173
8.6	Contribution of informal transport in CO ₂ reduction per day	175
9.1	Comparison of gasoline and CNG vehicle exhaust emissions	183
9.2	Emissions benefits of replacing diesel with dedicated CNG	
	and dual fuel vehicle	183
9.3	Comparison of CO ₂ emissions on buses from transport fuels	183
10.1	BRT systems in selected cities in Asia	193
10.2	Average emission values	197
10.3	Reduced emissions from the modal shift	199
10.4	Vehicle emission factors	199
10.5	Fuel savings from the modal shift	199
11.1	References to a co-benefits approach at high-level meetings	216
11.2	Examples of potential co-benefits projects in Asia	218
12.1	Registered CDM transport projects	229
12.2	Transport sector methodologies approved by the CDM	
	Executive Board	230
12.3	Regional distribution of the GEF portfolio in the	
	transportation sector	231
12.4	Level of GEF financing in the transportation sector	232
12.5	Assessing the impact of different types of instruments in Asia	237
13.1	Selected examples of transportation–climate policy integration	246
13.2	Select funding initiatives	247 256
13.3	Profiles of organizations and initiatives	Z5C

Contributors

Hirofumi Aizawa is the Deputy Director, Office of International Strategy on Climate Change, Climate Change Policy Division, Global Environment Bureau, The Ministry of Environment, Japan

Le Anh Tuan is a professor in the Institute of Transportation Engineering at Hanoi University of Technology, Hanoi, Vietnam

Felix Creutzig is a group leader at the Department Economics of Climate Change at the Technische Universität Berlin: TU Berlin, Berlin, Germany

Elizabeth Deakin is a professor in the Department of City and Regional Planning at University of California, Berkeley, USA

Shobhakar Dhakal is the Executive Director of the Global Carbon Project at the National Institute for Environmental Studies, Tsukuba, Japan

Nasreen Farah is the Principal Scientific Officer, The Hydrocarbon Development Institute of Pakistan, Islamabad, Pakistan

Andrew P. Grieshop is a post-doctoral research fellow at the Liu Institute for Global Issues, University of British Columbia, Vancouver, Canada

Sarath Guttikunda is an affiliate assistant research professor at the Desert Research Institute in the University of Nevada, Reno, USA and the founder of Urbanemissions.info, Delhi, India

Hironori Hamanaka is the Chairman of the Board of Directors at the Institute for Global Environmental Strategies, Hayama, Japan

Diego Silva Herran is a researcher at the National Institute for Environmental Studies in Tsukuba, Japan

xii List of contributors

Cornie Huizenga is the Joint Convener of the Partnership on Sustainable Low Carbon Transport

Daniel M. Kammen is a professor in the Energy and Resources Group and Director of the Renewable and Appropriate Energy Laboratory, University of California, Berkeley, USA

Milind Kandlikar is an associate professor at the Liu Institute for Global Issues, University of British Columbia, Vancouver, Canada

Ramani Kopakka is a joint chief environmental scientist in the Andhra Pradesh Pollution Control Board, Hyderabad, India

Naoko Matsumoto is a fellow at the Institute for Global Environmental Strategies, Hayama, Japan

Ray J. Minjares is the Climate and Health Program Lead at the International Council on Clean Transportation, San Francisco, USA

Wei-Shiuen Ng is a PhD student at the University of California, Berkeley, USA

Hans Oern is a transportation consultant at CONTRANS, Askim, Sweden

Ranjith Perera is an associate professor in the School of Environment, Resources and Development, Asian Institute of Technology, Bangkok, Thailand.

Ariva Sugandi Permana is a senior project researcher in the School of Environment, Resources and Development, Asian Institute of Technology, Bangkok, Thailand

Hilal A. Raza is the Director General at the Hydrocarbon Development Institute of Pakistan, Islamabad, Pakistan

Conor C. O. Reynolds is a post-doctoral fellow at the Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, Canada

Jane Romero is a policy researcher in the Climate Change Program at the Institute for Global Environmental Strategies, Hayama, Japan

Daniel Rutherford is the Aviation Lead at the International Council on Clean Transportation, San Francisco, USA

Lee Schipper was a project scientist for Global Metropolitan Studies at the University of California, Berkeley, and senior research engineer for the Precourt Energy Efficiency Center at Stanford University, USA

Ancha Srinivasan is a principal climate change specialist and the Climate Change Focal Point for Southeast Asia at the Asian Development Bank, Manila, Philippines

Heru Sutomo is a professor in the Center for Transportation and Logistics Studies (PUSTRAL) at the University of Gadjah Mada, Yogyakarta, Indonesia

Kazuhiko Takemoto is a senior fellow and Head of the Education, Sustainability and Ecosystem Assessment Programme at the United Nations University-Institute of Advanced Studies, Yokohama, Japan

Alainna Thomas is a PhD Student in the Urban and Regional Planning Department at the University of California, Berkeley, USA

Tokuya Wada is the Director, Office of International Strategy on Climate Change, Climate Change Policy Division, Global Environment Bureau, The Ministry of Environment, Japan

Michael P. Walsh is the Chairman of the Board of Directors at the International Council on Clean Transportation, Washington DC, USA

Syed Safdar Zaheer is the Chief Research Engineer at the Hydrocarbon Development Institute of Pakistan, Islamabad, Pakistan

Eric Zusman is a policy researcher in the Climate Change Program at the Institute for Global Environmental Strategies, Hayama, Japan

Foreword

Few images better illustrate the limits to growth than the traffic routinely lining the streets of Bangkok, Beijing, and other rapidly motorizing cities in Asia. But long lines of idle vehicles are not the only signs that Asia's cities are fast approaching a metaphorical dead end. Other indications include an expanding public health threat from mobile source air pollution, rising safety concerns from traffic accidents, and deepening dependencies on foreign oil. Meanwhile, a predicted five-fold increase in Asia's transportation-related carbon dioxide emissions (CO₂) between 2000 and 2050 suggests that the costs of rapid motorization may extend to future generations outside the region. Though policymakers have become cognizant of each of these problems, they have tended to miss the co-benefits from managing them in an integrated manner.

The oversight stems in part from a gap in research on co-benefits. Energy experts conceived of "co-benefits" in the early 1990s when their models suggested pricing carbon could yield collateral air quality and public health benefits. During the next two decades, a literature emerged evaluating the co-benefits from interventions ranging from energy efficiency reforms to Clean Development Mechanism (CDM) projects. More recently, studies have looked at the co-benefits from low carbon policies and measures in key sectors. These studies made it clear that co-benefits needed to be explicitly acknowledged and incorporated in policymaking processes. But they did not make it clear how to bring research on co-benefits to bear on policy. Hence this book picks up where others studies leave off—and it does so in developing Asia's transportation sector.

The book shows that bridging co-benefits research and policy will be challenging in developing Asia's transportation sector. Not only are policymakers often skeptical that climate change can be compatible with development, but also national institutions and the international climate change regime have offered few incentives to reason otherwise. The book then recognizes it is important to move from 1) an analysis of co-benefits; to 2) their consideration in national policies; to 3) potential support from the international climate change regime. The book's three sections—analytical frameworks, case studies, and international initiatives—offer insights from

these three unique perspectives. More importantly, they collectively help produce a set of complementary operational, policy, and enabling reforms needed to leverage co-benefits for low carbon transport in developing Asia. In so doing, it is also hoped that the book will generate images of an Asia fast approaching a more sustainable, low carbon future.

Achieving a sustainable, low carbon future in Asia is consistent with the mission of the Institute for Global Environmental Strategies (IGES). IGES is an international research institute based in Hayama, Japan that conducts strategic policy research on sustainable development in Asia and the Pacific. Many of the book's chapters were submitted for an IGES supported preevent at the Clean Air Initiative for Asian Cities (CAI-Asia) 2008 Better Air Quality (BAQ) Conference in Bangkok, Thailand. Revisions were made based on blind peer reviews and feedback at the International Forum for a Sustainable Asia and the Pacific (ISAP) in Hayama, Japan in 2009. The book has benefited greatly from those exchanges and the collective wisdom of many others along the way.

> Hironori Hamanaka Hayama, September 2011

Preface

Michael P. Walsh

Introduction

On-road motor vehicles cause urban air pollution, congest our cities with traffic, and often add unwelcome noise and stress to our lives. While there has been significant progress in developing air pollution abatement for gasoline-and diesel-fueled cars and trucks, growth in vehicle population and vehicle kilometers traveled, especially in rapidly industrializing countries in Asia, will offset many of these gains (WBCSD 2004). And from a climate standpoint, the transport sector is the world's fastest growing source of greenhouse gases (GHGs) (Wright and Fulton 2005).

The fact that the above problems are interrelated offers hope for a resolution. That resolution involves co-benefits. A co-benefit approach treats urban air pollution, congestion, noise pollution, and climate change as an integrated set of problems needing an integrated solution. As this book demonstrates, a co-benefits approach requires a transformation in how policies are formulated and implemented similar to the technical advances that brought reductions to urban air pollutants emissions. This preface outlines why such a transformation is both challenging and necessary. It begins by reviewing trends in motor vehicles and emissions before outlining why a co-benefit approach holds the key to low carbon transport in Asia.

Trends in world motor vehicle fleets

The three primary drivers behind the growth in the world's vehicle fleet are: population, urbanization, and economic development. All three continue to increase, especially in Asia. According to the United Nations, the global population grew from approximately 2.5 billion people in 1950 to about 7 billion today; and the population is projected to increase to approximately 9 billion by 2050. Annual gross domestic product (GDP) growth rates over the next two decades are also forecast to be high, particularly in Asia. As a result, a steady and substantial growth in the global and regional vehicle population (WBCSD 2004) is forecast to follow the historical trends in Figure 0.1.

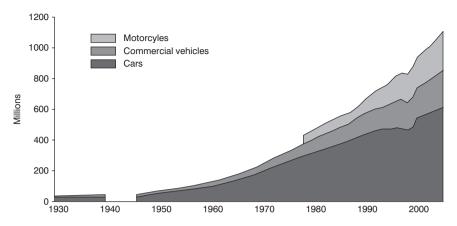


Figure 0.1 Trends in world motor vehicle production

Overall growth in the production of motor vehicles, especially since the end of World War II, has risen from about 5 million motor vehicles per year to over 70 million. In fact, between 1970 and 2005 approximately one million more vehicles have been produced each year than the year before (Wards 2006). Motor vehicle production has gradually moved from North America in the late 1950s to Europe by the late 1960s to Asia in the 1980s. In 2007, Asia became the largest producer of cars, trucks and buses in the world. While this surge started in Japan, recent growth has been centered in China. As illustrated in Figure 0.2, China is currently the world's first or second largest producer of motorcycles, cars, trucks and buses and is rapidly becoming a major market as well (Sperling and Gordon 2009).

Trends and motor vehicle emissions

The motorization of Asia has already had an impact on local air quality. Motor vehicles emit large quantities of carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO_x), sulfur oxides (SO_x), and toxic substances such as benzene, formaldehyde, acetylaldehyde, 1,3-butadiene, fine particles, and lead. Each of these pollutants, along with secondary by-products such as ozone (O₃) and particulate matter, can have adverse effects on health and the environment. Because of growing vehicle populations and resulting emissions, the fraction of health damaging pollution due to motor vehicles is rising in many cities in Asia.

The GHGs most closely identified with the transportation sector are three of the six main Kyoto gases, CO_2 , nitrous oxide (N_2O) , and methane (CH_4) . The global warming potentials (GWPs) of N_2O and CH_4 , relative to CO_2 , are presented in Table 0.1. It is also important to point out that other vehicle-related pollutants contribute to global warming, although their quantification has been difficult; these include CO_2 , non-methane hydrocarbons $(NMHC)_2$,

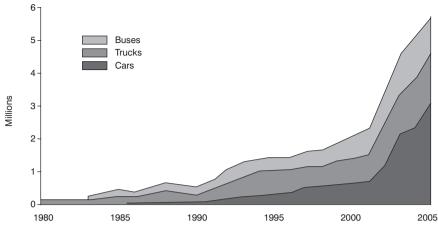


Figure 0.2 Production of cars, buses, and trucks in China

and nitrogen dioxide (NO₂). It is generally agreed, for example, that CO emitted from vehicles is eventually converted to CO₂ in the atmosphere and in the process consumes hydroxyl radicals which might otherwise reduce CH₄ concentrations. Similarly NMHCs and NO_x contribute to global background tropospheric ozone, a potent GHG. The GWPs listed in Table 0.1, including those attributed to CO, NMHCs and NO₂, are from the assessment report of the (1990) Intergovernmental Panel on Climate Change (IPCC) report.¹

There is also growing concern that black carbon (BC) or soot emitted from diesel vehicles and other sources is a potent GHG, in part due to the snow albedo (reflectivity) effect for solar radiation. According to the IPCC, BC is at least the third largest contributor to the positive radiative forcing that causes climate change. This is based on its estimated direct radiative forcing value of 0.34 W m⁻² and the value of its snow albedo effect of 0.1 W m⁻². The combined effect, 0.44 W m⁻², is undoubtedly positive. In fact, Ramanathan and Carmichael have recently concluded that, "emissions of black carbon are the second strongest contribution to current global warming, after carbon dioxide emissions" (Ramanathan and Carmichael 2008).

Table 0.1 Global warming potentials of transport pollutants

GWP	Carbon dioxide (CO ₂)	$Methane \ (CH_4)$	$\begin{array}{c} Nitrous \\ oxide \\ (N_2O) \end{array}$	Carbon monoxide (CO)	Non- methane hydro- carbons (NMHC)	Nitrogen dioxide (NO ₂)
100-year time horizon	1	21	310	3	11	7

Source: IPCC 1990

Trends in emissions reductions programs

Reducing the pollution that comes from vehicles usually requires a comprehensive strategy. Generally, the goal of a motor vehicle pollution control program is to reduce emissions to the degree reasonably necessary to achieve healthy air quality as rapidly as possible or, failing that for reasons of impracticality, to the practical limits of effective technological, economic, and social feasibility. A comprehensive strategy to achieve this goal includes four key components: 1) increasingly stringent emissions standards for new vehicles; 2) specifications for clean fuels; 3) programs to assure proper maintenance of in-use vehicles; and 4) transportation planning and demand management. These emission reduction goals should be achieved in the most cost-effective manner possible.

In almost every region, for every type of road vehicle and fuel, there is a clear trend toward increasingly stringent emissions requirements. Over the next decade, this pattern is moving toward similar controls for off-road vehicles and fuels. Driving these trends are several factors:

- the aforementioned growth in the number of vehicles (especially in China) and their concentration in urban areas where pollution levels remain unacceptably high;
- the accumulation of health studies that show adverse impacts at lower and lower levels and in the case of PM at virtually any level; and
- advances in vehicle technology and clean fuels that are making it possible to achieve lower and lower emissions levels at reasonable costs.

As suggested in the last bullet point, often progress in reducing emissions comes from combining cleaner fuels and technologies. For instance, almost every country in Asia has completed the elimination of lead from gasoline and started to reduce the sulfur levels in both gasoline and diesel. The reduction of sulfur levels has been beneficial for two reasons. First, sulfur is emitted as sulfur dioxide (SO₂) or sulfate particulate matter – both pollutants with wide-ranging impacts on human health, acidification of ecosystems and visibility. Second, cleaner fuels allow the introduction of vehicle pollution control technologies with the result that virtually every new gasoline-fueled car being sold in Asia comes equipped with a catalytic converter. Sulfur reductions and regulations will enable the use of improved catalysts, filters, and other technologies that can remove most of the pollution from gasoline and diesel fueled vehicles (UNEP 2007).

Technologies and fuels are now in the marketplace or rapidly emerging which in combination with clean fuels can lower road vehicle emissions of CO, HC, NO_x, and PM and other toxins to a very small fraction of what they were per kilometer driven. The major challenge now is getting these technologies adopted around the world.

Trends in reducing GHGs

In contrast to urban air pollutants, the prognosis for mitigating GHGs is less promising. Even in developed countries CO₂-equivalent emissions from the transportation sector grew significantly between 1990 and 2010; in fact, the growth in the transportation sector was by far the largest of any major sector during the period.

A variety of measures to reduce GHGs in the transportation sector are under development. Examples include: 1) mandatory fuel economy requirements or GHG emissions standards for motor vehicles; 2) shifts to renewable, lower carbon fuels; 3) mandating advanced vehicle technologies including battery electric cars, hybrids, plug-in hybrids and fuel cells; and 4) approaches to reduce vehicle kilometers driven, including congestion pricing, bus rapid transit (BRT), and vehicle and fuel taxes. Many countries have proposed, established, or are in the process of tightening motor vehicle fuel economy or GHG emission standards. These include the United States, the European Union, Japan, Canada, Australia, China, and South Korea. China has already implemented the second stage of its fuel consumption control program and is in the process of developing its next generation of requirements. India has also started introducing new fuel economy requirements.

But with regard to the impacts of transportation on climate change, to date the overall growth in vehicles is overwhelming control efforts. A variety of approaches to reduce vehicle kilometers driven, such as congestion pricing, BRT, and vehicle and fuel taxes, are making inroads in many parts of the world and these have the potential to reduce both conventional air pollution and GHG emissions, but require significant administrative and financial resources.

The Bellagio Memorandum

In June of 2001, a group of 18 experts met in Bellagio, Italy to develop a set of principles for the next generation of government actions that will shape future motor vehicle technology. The group included top regulators and experts from China, India, Thailand, the European Commission, France, Germany, Japan, and the United States. The meeting focused on air pollution emissions from road transport, including conventional and toxic pollutants as well as GHGs. The meeting arrived at a set of 43 principles reflecting the consensus opinion of the experts in attendance (Energy Foundation 2002). One of the most important of the Bellagio principles was that clean vehicle strategies should promote air quality (including air toxics) and greenhouse goals in parallel. To significant extent, this book demonstrates this principle's importance to a rapidly motorizing Asia.

The book's main argument is that treating greenhouse goals and other development priorities "in parallel" or through what is termed a co-benefit approach, holds the key to a low carbon future in Asia. A co-benefit approach's

appeal is simple: it can reduce concerns that benefits from low carbon policies will only be global, long-term and uncertain by identifying policies which also have local, near-term, and certain benefits (Krupnick et al. 2000). Yet, as the book also demonstrates, realizing the potential of a co-benefits approach is not simple. It requires 1) frameworks for analyzing which policies and measures can maximize synergies between climate and development goals; 2) experiences with the barriers encountered in developing and implementing those policies and measures; and 3) an appreciation of how the international climate change regime, development agencies, and foreign governments can address remaining challenges at the international level. The book will make a valuable contribution to each of these areas. To a significant extent, it demonstrates that the next great challenge to mobility requires a different approach to policymaking. It also demonstrates that efforts to overcome this challenge will be based in Asia.

Note

Because of difficulty reaching agreement on the appropriate quantification, specific GWPs for these gases were not contained in the most recent Intergovernmental Panel on Climate Change (IPCC) report.

References

Energy Foundation (2002) 'Bellagio Memorandum on Motor Vehicle Policy, consensus document', 19–21 June 2001, Bellagio.

Intergovernmental Panel on Climate Change (IPCC), Working Group I (1990) Climate Change: The IPCC Scientific Assessment, J.T. Houghton, G.J. Jenkins and J.J. Ephraums (eds.) Cambridge: Cambridge University Press.

Krupnick, A., Burtraw, B. and Markandya, A. (2000) 'The ancillary benefits and costs of climate change mitigation: a conceptual framework' in *IPCC*, *Ancillary Benefits and Costs of Greenhouse Gas Mitigation, Proceedings of an IPCC Cosponsored Workshop*, Paris: OECD.

Ramanathan, V. and Carmichael, G. (2008) 'Global and regional climate changes due to black carbon', *Nature Geoscience*, 1: 221–227.

Sperling, D. and Gordon, D. (2009) Two Billion Cars: Driving Toward Sustainability. Oxford: Oxford University Press.

United Nations Environment Program (UNEP) (2007) 'Opening the door to cleaner vehicles in developing and transition countries: the role of lower sulfur fuels'. Report of the Sulfur Working Group of the Partnership for Clean Fuels and Vehicles, Nairobi: UNEP.

Wards Motor Vehicle Data (2006) Southfield: Wards.

World Business Council on Sustainable Development (WBCSD) (2004) Mobility 2030: Meeting the Challenges to Sustainability, Geneva: WBCSD. Online. Available HTTP: http://www.wbcsd.org/web/publications/mobility/mobility-full.pdf (accessed 23 April 2009).

Wright, L. and Fulton, L. (2005) 'Climate change mitigation and transport in developing nations', *Transport Reviews*, 25: 691–717.

Acknowledgements

Editing a multi-author volume is a collective effort in the fullest sense of the word. We would therefore be remiss if we did not recognize the many individuals who contributed to this project. The project was initiated as preevent meeting at the Clean Air Initiative for Asian Cities (CAI-Asia) Better Air Quality Conference (BAQ) in 2008. We would like to thank all those who participated in that meeting, including Mr Hideyuki Mori, the President of the Institute for Global Environmental Strategies (IGES), who delivered the meeting's opening address and ably guided the project from beginning to end. Drafts of papers at the BAQ meeting were then reviewed by more than 30 experts who voluntarily spared their time and provided inputs. Based on that feedback the chapters were revised and shared at the first International Forum for a Sustainable Asia and the Pacific (ISAP) meeting in 2009.

Throughout the process, advisors and colleagues at IGES provided both intellectual stimulation and collegiality. Professor Hironori Hamanaka, Professor Akio Morishima, Dr Shuzo Nishioka, Mr Taka Hiraishi, Dr Jusen Asuka, Dr Peter King, Dr Kentaro Tamura, Dr Jane Romero, Dr S.V.R.K. Prabhakar, Mr Koji Fukuda, Dr Takuro Kobashi, Dr Hitomi Kimura, Ms Maricor Muzones, Dr Toshihiro Uchida, Dr Frank Ling, Ms Kyoko Matsumoto, Dr Janardhanan Nandumukar, Ms Jiangwen Guo, Ms Akiko Miyatsuka, Ms Madoka Yoshino, Mr Joji Yoshikuni, Ms Kyoko Miwa, Dr Wataru Machida, Ms Takako Wakayama, Dr Jun Ichimura, Mr Kazuhisa Koakutsu, Ms Nozomi Okubo, Dr Zhou Xin, Dr Robert Didham, Dr Mark Elder, Dr Henry Scheyvens, Dr Magnus Bengtsson, Ms Izumi Munekata, Ms Junko Matsui, Ms Yoriko Itakura, Ms Tomoko Ishikawa, Ms Aoi Oride, Ms Eiko Kitamura, and Ms Megumi Kido.

The project has also benefited greatly from colleagues outside of IGES, including Professor Katsunori Suzuki of Kanazawa University; Mr Cornie Huizenga at the Partnership on Sustainable Low Carbon Transport (SloCAT); Ms Sophie Punte, Ms May Ajero, Mr Bert Fabian, Ms Glynda Blathan, Mr Alvin Mejia and Mr Sudhir Gotta at CAI-Asia; Dr Johan Kuylenstierna, Mr Richard Mills, Dr Kevin Hicks and Mr Lars Nordberg at the Global Atmospheric Pollution Forum (GAPF); Ms Aida Roman at the United Nations Environment Programme (UNEP); Mr Kotaro Kawamata,

Mr James Leather, Mr Sharad Saxena and Mr Kesiuke Iyadomi at the Asian Development Bank (ADB); Mr Masakazu Ichimura at the United Nations Economic and Social Commission on Asia and the Pacific (UNESCAP); Mr Makoto Kato at the Overseas Environmental Cooperation Center (OECC); Dr Meeyoung Choi at the United Nations Educational, Scientific, and Cultural Organization (UNESCO); Mr Holger Dalkmann at Embarq; Mr Ko Sakamoto at the Transport Research Laboratory; Daniel Bongardt at GIZ; Dr Jose de Puppim Oliveira at UNU-IAS and Dr Hiroaki Takiguchi, Ms Keiko Kuroda and Mr Yuji Mizuno at the Ministry of Environment, Japan (MoEJ). While all of the mentioned were critical to the book's completion, mistakes rest solely with the editors.

The project obtained financial support from the Global Environmental Research Fund (S-6 and E-0901) of the MoEJ.

The book is dedicated to two sources of inspiration. To Dr. Lee Schipper who passed before the book's publication but whose dedication to building safer and cleaner transport systems will live on through the book's pages and the many people he touched in the transport community. And to our families: without their love—and willingness to give of themselves—this project would not have been possible.

Eric Zusman, Ancha Srinivasan, and Shobhakar Dhakal

Abbreviations

ADB Asian Development Bank

APPCB Andhra Pradesh State Pollution Control Board

AWG-KP Ad Hoc Working Group on Further Commitments for Annex-1

Parties under the Kyoto Protocol

AWG-LCA Ad Hoc Working Group on Long-term Cooperative Action

under the Convention

BAQ better air quality
BAU business as usual
BC black carbon
BCA benefit-cost analysis

BJTRC Beijing Transportation Research Center

BMA Bangkok Metropolitan Administration

BMBLR Beijing Municipal Bureau of Land and Resources

BMCHURD Beijing Municipal Commission of Housing and Urban–Rural

Development

BMCT Beijing Municipal Commission of Transport

BMDRC Beijing Municipal Development and Reform Commission BMEPB Beijing Municipal Environmental Protection Bureau

BRT Bus Rapid Transit C₅H₅ cyclopentadienyl

CAFE Corporate Average Fleet Efficiency
CAI-Asia Clean Air Initiative for Asian Cities
CDM Clean Development Mechanism
CEC Central Environment Council
CERs certified emission reductions

CH, methane

CIE Chief Inspector of Explosives
CNG compressed natural gas
CO carbon monoxide

CO₂ carbon dioxide COP Conference of t

COP Conference of the Parties
CPCB Central Pollution Control Board
DALY disability-adjusted life year

DIESEL Developing Integrated Emissions Strategies for Existing Land-

transport

DOC diesel oxidation catalysts

DPF diesel particulate filters EC European Community

EIA environmental impact assessment
EMR Extended Metropolitan Regions
ENERCON Energy Conservation Centres
EPA Environmental Protection Agency

ERP Electronic Road Pricing

EU European Union

Euro-I Europe I emissions standard
Euro-II Europe II emissions standard
Euro-III Europe III emissions standard
FAS free acceleration smoke
FDI foreign direct investment

G8 Group of Eight

GAPF Global Atmospheric Pollution Forum

GCP global cooling potentials GDP gross domestic product

GHG greenhouse gas

GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit

(formerly Deutsche Gesellschaft für Technische Zusmmanarbeit

or GTZ)

GPS global positioning systems

GT gigatonnes

GVW gross vehicle weight GWP global warming potential

HAIDEP Hanoi Integrated Development and Environment Program

HAPAP Hyderabad Air Pollution Action Plan

HC hydrocarbons

HDDV heavy-duty diesel vehicles

HDIP Hydrocarbon Institute of Pakistan

HEI Health Effects Institute

HUDA Hyderabad Urban Development Area

I/M inspection and maintenance

ICCT International Council on Clean Transportation

IEA International Energy Agency
IES Integrated Environmental Strategies

IGES Institute for Global Environmental Strategies
IISD International Institute for Sustainable Development
IPCC Intergovernmental Panel on Climate Change

ISAP International Forum for a Sustainable Asia and the Pacific ITDP Institute for Transportation and Development Policy

ITF International Transport Forum

JICA Japan International Cooperation Agency

JNNURM Jawaharlal Nehru National Urban Renewal Mission

KBA German Federal Motor Transport Authority

LEM Law on Environmental Management

LPG liquefied petroleum gas

LSPM Law on Spatial Plan and Management LTOT Law on Traffic and Overland Transports

xxvi Abbreviations

MAQML mobile air quality monitoring laboratory

MMTS multi-modal transport system MoE Ministry of Environment

MoEJ Ministry of the Environment, Japan MRV measurable, reportable, and verifiable

N₂O nitrous oxide

NDRC National Development and Reform Commission

NGOs non-governmental organizations

NGVs natural gas vehicles

NMHC non-methane hydrocarbons NMT non-motorized transport

NO₂ nitrogen dioxide NO₂ nitrogen oxides

O₂ ozone

ODA Official Development Assistance

OECC Overseas Environmental Cooperation Center, Japan

OECD Organisation for Economic Co-operation and Development

OGRA Oil and Gas Regulatory Authority

OMCs oil marketing companies

PAPA Public Health and Air Pollution in Asia

Pb lead

PCU passenger car unit PM particulate matter

PPP public-private-partnership PUC pollution under control

RNSP Regulation on National Spatial Plan

SD-PAMs sustainable development policies and measures SEA strategic environmental impact assessment

SO sulfur monoxide SO₂ sulfur dioxide SO₂ sulfur oxides

SPM suspended particulate matter

SUTP Sustainable Urban Transport Project
TDM transport demand management
TSP total suspended particulates

UITP International Union of Public Transport

ULSD ultra-low sulfur diesel

UNDP United Nations Development Programme
UNEP United Nations Environment Programme

UNESCAP United Nations Economic and Social Commission for Asia and

the Pacific

UNFCCC United Nations Framework Convention on Climate Change

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds VQS vehicle quota system

WBCSD World Business Council on Sustainable Development

WHO World Health Organization
WRI World Resources Institute

Part I Introduction

1 Low carbon transport and co-benefits in Asia

An overview

Eric Zusman, Ancha Srinivasan, and Shobhakar Dhakal

Introduction

Developing Asia¹ is rapidly motorizing. Though the majority of the region's population relies upon non-motorized transport, a fast-growing proportion is turning to motorized vehicles. The negative externalities from this shift are mounting quickly. From Beijing to Bandung, policymakers are struggling to control urban air pollution, curb on-road congestion, and cut petroleum imports. The consequences of developing Asia's motorization do not end in the region, however. Carbon dioxide (CO₂) emissions from developing Asia's transport sector are predicted to grow from nearly 1 billion tons to more than 2 billion tons per year between 2005 and 2030 (WBCSD 2004, ADB 2009).² Without a significant deviation from these predictions, growth in the region's transport-related greenhouse gas (GHG) emissions could undermine progress in other sectors and heighten the risks of a climate crisis (IEA 2009). Low carbon alternatives are therefore urgently needed from developing Asia's transport sector.

Crafting low carbon alternatives requires reconciling several tensions. Accessibility and connectivity are essential to economic development, but much of Asia lacks access to dependable vehicles and infrastructure. The region's policymakers can still construct low carbon transport systems, but short-sighted investments may close windows of opportunity soon. Increased awareness of climate change can prevent carbon-intensive lock-ins, but incentives for early climate actions are currently limited. Viewed from this perspective, developing Asia's prospects for a low carbon future appear slim. This book is nevertheless cautiously optimistic that developing Asia can craft the low carbon transport strategies needed to deviate from business-as-usual (BAU) predictions. The key to designing and implementing these strategies are their co-benefits.

The term "co-benefits" originated from studies on climate policies in industrialized countries. The first such studies estimated the local air quality and public health *developmental co-benefits* of a carbon tax (Ayres and Walters 1991, Pearce 2000, Markandya and Rubbelke 2003). Since this early work, some have reinterpreted the concept to argue that *climate co-benefits* from sector-specific development policies merit more attention in developing