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Abstract: Receptor models (RMs) identify pollution sources by solving a mass 
balance equation using measured chemical composition of samples either in 
combination with known source profiles or not. This approach has been 
extensively used in North America and South-Eastern Asia mainly on 
particulate matter (PM). Also, in Europe RMs found wide acceptance and 
contributed to the identification of sources in support of remediation measures 
development. With the aim of harmonising the activity on receptor modelling 
in Europe and supporting the implementation of Directive 2008/50/EC, a 
survey on the use of this methodology was carried out. In this study we discuss 
the sources of uncertainty in the input data, and the uncertainty contribution 
deriving from critical steps. We describe a methodology to assess RMs 
performance in intercomparison exercises developed and evaluated by the JRC 
within the framework of the forum for air quality modelling (FAIRMODE). 
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This paper is a revised and expanded version of a paper entitled ‘Improving 
source apportionment with receptor models to foster the air quality directive 
implementation’ presented at the 14th International Conference on 
Harmonisation within Atmospheric Dispersion Modelling for Regulatory 
Purposes, Kos, Greece, 2–6 October 2011. 

 

1 Introduction 

The identification of pollution sources is required in many tasks concerning the air 
quality legislation (air quality assessment, development of action plans, identification of 
natural sources, etc.). Receptor models (RMs) are used to accomplish source 
apportionment by analysing chemical and physical parameters measured at one or more 
specific sites (receptor). RMs are based on the mass conservation principle and identify 
sources/factors by solving the mass balance equation given by: 

1
ij ik kj ij

P

p

x g f e
=

= +∑  (1) 

where xij is the concentration of the jth species in the ith sample, gik is the contribution of 
kth source to ith sample, fkj is the concentration of the jth species in the kth source, and eij is 
the residual for each sample/species. RMs that explicitly use source profiles (fkj) to solve 
equation (1) are referred to as chemical mass balance methods (e.g., CMB) while models 
which solve the equation without using ‘a priori’ information on sources composition are 
called multivariate models [e.g., principal component analysis (PCA), UNMIX, positive 
matrix factorisation (PMF) and the other factor analysis (FA) models]. An intermediate 
category consists of multivariate models that can accommodate profiles of some sources 
and other constraints [e.g., COPREM and PMF solved with multilinear engine (ME)]. 
RMs are most commonly used to apportion particulate matter (PM) on the basis of its 
chemical composition. Typical input data are: major ions (e.g., nitrates and sulphates), 
carbonaceous fractions (organic and elemental carbon), trace elements and organic 
markers (e.g., levoglucosan and hopanes). Also, volatile organic compounds (VOCs), 
polycyclic aromatic hydrocarbons (PAHs), inorganic gases and aerosol size distributions 
have been used for source apportionment with RMs. 

RMs process input data uncertainty and intrinsic model uncertainty in order to 
estimate the uncertainty in their output. This methodology is independent from emission 
inventories and is appropriate for urban and regional scales. Moreover, when wind speed 
and direction or backward trajectories are explicitly included in the analysis, RMs are 
suitable to study medium to long range transport (Hopke, 2009). 

In this paper, we present a survey carried out to identify the RMs commonly used in 
Europe, discuss the main sources of uncertainty in these techniques and describe a new 
methodology to assess RMs performance in intercomparison exercises. 
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2 RMs used in Europe 

A survey on the use of RMs for PM source apportionment in Europe between 2001 and 
2010 is presented (studies performed in 2011 and available when the manuscript was 
submitted are also included). A total of 79 studies in 18 countries using 11 different 
model types were examined. In the 243 reported records the considered mass fraction 
spans from PM10 to PM1. About 60% of the studies were carried out in urban background 
sites, 16% in source oriented sites, 15% in rural sites, and the remaining 9% in either 
remote, suburban or residential sites. 

The significance of RMs is evidenced by the dramatic increase in the number of 
scientific publications on this topic during the last decade and the increasing ready-to-use 
available tools. The highest increase rate in the number of studies coincides with the 
entry into force of the limit value for PM10 (Directive 1999/30/EC) and the target value 
for PM2.5, (Directive 2008/50/EC), in 2005 and 2010 respectively (Figure 1). In the last 
decade, 36% of the receptor modelling studies on filed air quality data were performed 
with PMF and ME, 24% with CMB, 20% with PCA and absolute PCA (APCA or 
APCS), 9% with FA and absolute principal component factor analysis (APCFA), and  
the remaining 11% with either APEG model, COPREM, Lenschow (or incremental 
concentrations approach), UNMIX or mass closure (MC). 

Figure 1 Time trend of RMs studies in Europe between 2001 and 2010 (see description in  
the text) (see online version for colours) 
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Figure 2 European source apportionment studies published between 2001 and 2010  
(including some studies carried out in 2011) grouped by model type (see online  
version for colours) 

 

Figure 3 Geographic distribution of European source apportionment studies using RMs published 
between 2001 and 2010 (including some studies carried out in 2011) (see online version 
for colours) 
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The most common model (88 records) is PMF, which is sometimes solved using the ME 
platform. This kind of models became widespread especially after 2005 when the US-
EPA made available user-friendly on line versions. The diffusion of PMF is also linked to 
its use in the elaboration of aerosol mass spectrometer (AMS) data, mostly oriented to the 
apportionment of the PM1 organic particulate (nine studies). PCA and APCA family of 
models (50 records) are also very popular and dominate during the first part of the last 
decade. CMB and the FA models (FA and APCFA), are used in 59 and 22 records, 
respectively. Despite their good potentials UNMIX and COPREM aroused little interest 
among European experts. 

There are conceptual models based on a number of empirical assumptions that have 
been used in specific geographic areas. APEG receptor model was developed by the ‘Air 
Pollution Experts Group’ in the UK and was used for extensive (preliminary screening) 
source apportionment studies on several cities. The Lenschow model was developed in 
Germany to estimate broad categories of sources combining different type of data from 
large cities and their surrounding area. 

Spain and Italy are the countries with the highest number of receptor model records 
(58 and 56, respectively), followed by France (29), UK (24), Switzerland and Poland 
(12). A number of studies are also reported for Ireland (8), Germany (7), Finland and 
Turkey (6), Greece and Austria (5), Portugal and Sweden (4), Denmark (3), and the 
Netherlands (2). Only one record is available for Norway and Czech Republic (Figure 3). 

The survey shows that different models and approaches (model implementations) are 
used in SA. In order to test whether the methodologies are suitable for the purpose of 
identifying sources, their performances should be assessed on the basis of quantitative 
criteria. Such criteria are commonly expressed as maximum accepted uncertainty. In the 
following sections the main sources of uncertainty and the methodology developed to test 
model performance in intercomparison exercises are discussed. 

3 Sources of uncertainty 

In RMs the uncertainty derives from both inaccuracy in the input data and model 
assumptions and ambiguities. Interpreting the results of a source apportionment study and 
comparing results from studies in different sites or in the same site with different models 
requires proper uncertainty estimation. In addition, there are models like PMF that weight 
data on the basis of their uncertainty. In this case, appropriate uncertainty estimation is a 
prerequisite for model execution. Moreover, improving the comparability of the model 
results requires harmonisation of the procedures according to international standards like 
the guide for the expression of uncertainty in measurements (GUM). Nevertheless, the 
analytical uncertainty is only the starting point to estimate the total uncertainty of the 
input data (Polissar et al., 1998). 

3.1 Input data uncertainty 

The identification of outliers and anomalous values is the first step to keep uncertainty 
under control. Also, criteria to report values below the minimum detection limit (MDL) 
need to be established. Certain models do not treat missing values; therefore, it is 
necessary to estimate them in order to avoid empty entries in the input data matrix. 
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Clearly, missing values and values below MDL have an impact on the quality of results 
since the uncertainty of estimated values is higher than the one of measured ones. 

As previously mentioned, one of the most relevant components of input data 
uncertainty is the analytical one. The estimation of this component is carried out on the 
basis of the analytical method specifications. However, it often happens to deal with 
databases in which single entry uncertainties are unavailable or inconsistent. In these 
cases uncertainties may be estimated using equation-based approaches which rely on 
species MDL, empirical constants (k), species concentration (C) and/or coefficient of 
variation (CV). 

Analytical uncertainty can be estimated by linear regression where σa is the 
uncertainty of the analytical procedure and m is the mass of the analyte, while σ0 and α 
are fitting parameters (Anttila et al., 1995): 

2 2 2
0 ( )aσ σ αm= +  (2) 

In the estimated fractional uncertainties (EFU) method the error structures (sij) are (Kim 
and Hopke, 2005): 

[ ] / 3ij ijs MDL kx= +  (3) 

When no empirical constants but MDL, and CV are used, the analytical uncertainty is 
(Chow et al., 2007): 

( )22
,,

a
i i ti t iσ MDL CV C= + ×  (4) 

Sampling contributes to the uncertainty of measured values due to sampling volume 
uncertainty, selective effect and other artefacts caused by the inlet, losses due to sample 
transport and conservation. These contributions can be assessed with field tests (e.g., 
collocated measurements and comparison with reference instrumentation). Other authors 
incorporated the sampling uncertainty into the input data uncertainty by considering the 
sampled volume (Vi) and a coefficient (β) to account for additional uncertainty sources 
(Amato et al., 2009): 

( )
2 22
2
A

ijij
i

σσ βx
V

= +  (5) 

The time representativeness of the model outputs depends on the amount and distribution 
of collected samples. Studies oriented to assess average levels use samples collected 
throughout the year, while studies interested in specific kind of events may concentrate 
the data collection in specific time windows (seasons, weeks). 

The output of RMs like CMB, which use source profiles as input, could be seriously 
affected by their uncertainty. In order to prevent problems of collinearity, sources with 
similar chemical composition must be combined into source categories. The selection of 
sources to include in the final input should represent the local sources and their time 
variability in the study area. The suitability of source profiles may be checked with edge 
analysis and ratio-ratio plots (Robinson et al., 2006). Moreover, using measured local 
source profiles contributes to improve the model performance (Colombi et al., 2010). 
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3.2 Uncertainty associated with model performance 

Considering that RMs rely on the mass conservation principle between source and 
receptor, substantial departures from this assumption due to evaporation, condensation or 
degradation of species, constitute a source of uncertainty. A way to deal with this kind of 
species is to increase their uncertainty according to their volatility or reactivity. Also, 
reactive species stray from the mass conservation principle. RMs often identify secondary 
inorganic aerosol assuming that ammonium sulphate and nitrate mainly derive from 
gaseous precursors. When quantitative information about the processes that precursor 
species undergo after emission is available, it is possible to introduce empirical 
coefficients [e.g., fractional aerosol coefficients, (Grosjean and Seinfeld, 1989)] to 
estimate the expected amounts of products at the receptor. 

In multivariate models, the number of relevant factors and their correspondence with 
sources is unknown and represents another source of uncertainty. Estimating the number 
of factors is often performed with an iterative procedure by checking the influence of the 
number of factors on the model performance. A number of indicators such as, signal to 
noise, residuals, Q value (in PMF), are used to guide the selection of the number of 
factors. The procedure to establish a correspondence between the factors resulting from 
the analysis and the sources in the area may substantially contribute to the uncertainty of 
the output. This step shall consider the comparison of the factor profiles with measured 
local source profiles either visually or using statistical tests to identify the best fit 
(advisable). 

Another contribution to the overall uncertainty in FA is the lack of a unique solution 
due to the large number of unknown variables. This limitation of FA, called rotational 
uncertainty (Paatero and Hopke, 2009), is partially removed by non-negativity constraints 
in PMF. Tests on residuals, Qm parameter, FPEAK and analysis of edges can be used to 
identify the best rotation (Paatero et al., 2002). Moreover, introducing additional 
information about the sources and other constraints contributes to reduce or eliminate the 
rotational uncertainty. The most evolved tools include routine tests to evaluate the model 
performance and provide an estimation of the uncertainty associated to the source 
contribution estimations (SCE). As an alternative, overall model uncertainty may be 
assessed by performing intercomparison exercises. 

3.3 Intercomparison of RMs 

The intercomparison consists of comparing the results of source apportionment analyses 
performed by independent practitioners using the same or different RMs on the same 
dataset. The intercomparison main objectives are: 

a to gather information about the reproducibility between different approaches and 
scientific backgrounds 

b to assess whether the uncertainty of the model output (SCE) meets given quality 
criteria. 

In real-world source apportionment studies it is not possible to validate the model outputs 
against measured values since the actual contributions from the sources are unknown. 
Different approaches have been used to compare the performance of different models on 
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the same dataset: visual comparison of models’ SCE mean and standard deviation for 
each source type (Favez et al., 2010; Hopke et al., 2006; Larsen et al., 2008), correlation 
coefficient (Favez et al., 2010; Hopke et al., 2006; Sandradewi et al., 2008) and 
regression analysis between SCE provided by different models (Rizzo and Scheff, 2007; 
Sandradewi et al., 2008). 

The methodology to evaluate intercomparison results presented below was developed 
on the basis of international standards for proficiency testing exercises (ISO 13528). The 
method consists of three milestones: 

a the reference value (X), that is the value to be compared with participant estimations 

b the standard deviation for assessment ˆ( ),σ  that is the criterion to evaluate 
participants’ performance 

c the algorithm to compare participants and reference values (z-score or z’-score). 

The test is performed for every source category separately. The correspondence of 
sources identified by participants to each source category is tested by comparing its 
chemical profile (loadings) and time trend (scores) with all the other members of the 
same category and with measured source profiles, when available. The comparison is 
performed using Pearson correlation coefficient (P) and the weighted difference (WD): 

2 2
1

1/
n

ia ja
ij

a ia ja

x x
WD n

s s=

−
=

+
∑  (6) 

where xi and xj are the relative concentrations (or their logarithms) of the n species in the 
factor/source profiles i and j, respectively, and si and sj are their uncertainties. Only 
factor/sources with median P ≥ 0.6 and median WD ≤ 2 are to be included in the 
following step. 

When a synthetic database is used, the reference values (X) are the known source 
contributions. On the contrary, when the database consists of real-world measurements, X 
is the expected SCE for a given source and is generated by the robust analysis iterative 
algorithm (Analytical Methods Committee, 1989). The algorithm is applied to the 
participant’s average values and provides the robust average (x*) and the robust standard 
deviation (s*). 

The assessment criterion ˆ( ),σ  may be either derived from Directive 2008/50/EC 
model quality objectives (50% for PM annual mean) or calculated by robust analysis (s*). 

The participants’ scores are calculated using the z-score performance indicator (ISO 
13528). The z-score indicates whether the difference between the participant measured 
value and the reference value remains within the limits of the specified criterion. 

ˆ
ix XZ
σ
−

=  (7) 

If ˆ2 ,Z σ≤  results are considered coherent with ˆ,σ  if ˆ ˆ2 3 ,σ Z σ≤ ≤  results are 

considered questionable, and if ˆZ 3 ,σ>  results are considered not coherent with ˆ.σ  
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4 Conclusions 

The survey showed that RMs are widely used in Europe to identify pollution sources. The 
kind of outputs and the availability of ready-to-use tools evolve continuously and make 
this methodology suitable for providing reliable inputs for air quality policy planning and 
follow up. Nevertheless, quantitative assessment of model performances and definition of 
common criteria and procedures are required to set quality standards and improve the 
comparability of the studies across Europe. 

Assessment and reporting of model input and output uncertainty is a prerequisite for 
model performance evaluation. In the present paper, input data inaccuracy and model 
assumptions and ambiguities are considered the main sources of uncertainty in receptor 
modelling. Moreover, in order to evaluate whether models meet given quality standards 
in intercomparison exercises, a methodology based on model output uncertainty is 
described. 
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