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Introduction

This report contains a guide and a European 
harmonised protocol prepared within the 
framework of the JRC initiative for the harmo-
nisation of source apportionment with receptor 
models. This initiative was launched in collabo-
ration with the European networks in the field of 
air quality modelling (FAIRMODE) and measure-
ments (AQUILA). The initiative also includes a 
review of the methodologies used in Europe for 
source identification and intercomparison exer-
cises for the quantitative assessment of the 
performance of source apportionment models.

The document, drafted by a group of interna-
tional experts, is organised following the logical 
sequence of steps to be carried out in a source 
apportionment study. Sections with increasing 
levels of complexity make it accessible to read-
ers with different degrees of familiarity with this 
topic, from air quality managers to air pollution 
experts and modellers. It has been conceived as 
a reference document that includes tutorials, 
technical recommendations and check lists. 

EU policy context and importance 
of the issue 

The abatement of pollution at its source is one 
of the overarching principles of the Thematic 
Strategy on Air Pollution (TSAP; Dir. 2008/50/EC, 
preamble). Reliable and quantitative informa-
tion on pollution sources is essential for the 
implementation of the Air Quality Directives 
(AQD: Dir. 2008/50/EC and Dir. 2004/107/EC). 
For instance, pollution source information is 
required for identifying whether exceedances 
are due to natural sources or to road salting and 
sanding (arts. 20 and 21), preparing air quality 
plans (Annex XV A), quantifying transbound-
ary pollution (Annex IV A), informing the public 
(Annex XVI) and, in the past, for demonstrating 
eligibility for postponement of PM10 and NO2 
limit value attainment (COM/2008/403). 

Source Apportionment (SA) is the identification 
of ambient air pollution sources and the quanti-
fication of their contribution to pollution levels. 
This task can be accomplished using different 
approaches: emission inventories, source-ori-
ented models and receptor-oriented models. 

Goals/objectives of the report

The objective of this document is to dissemi-
nate and promote the best available method-
ologies for source identification using receptor 
models, and to harmonise their application 
across Europe.

In addition, it aims at making results of 
source apportionment studies more acces-
sible to experts involved in the development 
and assessment of pollution source abatement 
measures. 

Methodology 

Receptor models (RMs) apportion the meas-
ured mass of an atmospheric pollutant at a 
given site to its emission sources by solving 
a mass balance equation. These models have 
the advantage of providing information derived 
from real-world measurements, including 
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estimations of output uncertainty. However, 
their applicability to very reactive species is 
limited. RMs are extensively used for source 
contribution quantification at local and regional 
scales all over the world. In the past decade, the 
number of scientific publications and applica-
tions in this field has been increasing steadily, 
and tools have been developed with constantly 
improving capabilities in terms of source reso-
lution and the accuracy of source contribution 
quantification (Belis et al., 2013).

The protocol presented in this document focus-
es on the most commonly used RMs: Chemical 
Mass Balance (CMB) and Positive Matrix 
Factorization (PMF). The CMB model is a ‘least 
squares’ model which estimates source contri-
butions on the basis of the emissions’ chemical 
composition (fingerprints) and the concentra-
tion of pollutants. The PMF model is based on 
uncertainty-weighted factor analysis which 
relies on pollutant measurements. 

In addition, to promote the development and 
application of state-of-the-art methodologies, 
a section is also included on innovative and 
advanced methods, most of which are under 
continuous development. This section comprises 
trajectory and wind-based models, constrained 
and expanded models, the Aethalometer mod-
el, and models based on advanced spectromet-
ric measurements and isotopic analyses.

Key results, deliverables, key messages

Due to the complexity of source apportion-
ment studies, it is essential to support the 
final results with an appropriate description 
of the methodological choices available and 
with documentation of the objective qualita-
tive or quantitative information that supports 
expert decisions. In this way, reviewers and final 
users (e.g. air quality managers) are provided 
with the elements they need to assess the rel-
evance of the study, and other modellers have 
the possibility to reproduce the same approach. 
It is essential that only methodologies fulfilling 
quality standards that are in line with the objec-
tives of the study are adopted. To that end, the 
information about models’ performance col-
lected in the above-mentioned intercomparison 
exercises provides the necessary complement 
to the procedures described in this document. 
These exercises have demonstrated that RMs 
provide quantitative estimations of contribu-
tions by source category with at most 50 % 
uncertainty (Karagulian et al., 2012). It follows 
that SA studies that are consistent with the pre-
sent protocol, in particular with regard to the 
quality assurance steps, can claim state-of-
the-art performance in line with that observed 
in European-wide intercomparison exercises.

Real/potential impact and benefits to 
customers, users, and stakeholders

1.  Quantitative estimations of pollution sources 
obtained with reliable and harmonised meth-
ods across Europe constitute a fundamental 
input for the different actors involved in the 
implementation of the Air Quality Directives 
at the local and regional scales. The present 
document helps to streamline the techni-
cal criteria required for accomplishing such 
a complex task according to the best avail-
able standards, with a view to improving the 
transparency and comparability of results 
obtained by different practitioners in differ-
ent areas of Europe. 

2.  Expected benefits of the report for different 
target groups:
-  the report is intended to be a reference 

for practitioners, providing them with clear 
and widely accepted criteria for model 
execution and the interpretation of results;

-  final users of pollution source data, such 
as authorities involved in air quality man-
agement, would have access to transpar-
ent and comparable information obtained 
with known quality standards that can be 
used as input data in scenario- or cost-
benefit analyses; 

-  harmonisation would have a positive 
impact on the quality and comparability 
of data reported by Member States to the 
Commission under the scheme for recip-
rocal exchange of information and report-
ing on ambient air quality (Commission 
Implementing Decision 2011/850/EU);

-  the report is an information dissemination 
tool for air quality managers and atmos-
pheric scientists that are not familiar with 
this methodology.

3.  In addition, the synergy between the harmo-
nised technical protocol and the intercom-
parison exercises provides the basis for the 
continuous improvement of source identifi-
cation approaches in order to keep abreast 
of the scientific developments in this field.

4.   All the methodologies for source identi-
fication have strengths and limitations. 
Considering that RMs deliver independent 
estimates of source contributions at a given 
site, they can also be used for the validation 
of other methodologies such as emission 
inventories and air quality models. 
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SUMMARY

Abatement of pollution at its source is one 
of the overarching principles of the Thematic 
Strategy on Air Pollution (TSAP; Dir. 2008/50/
EC, preamble). Reliable and quantitative infor-
mation on pollution sources is essential for the 
implementation of the Air Quality Directives 
(AQD: Dir. 2008/50/EC and Dir. 2004/107/EC). 
For instance, pollution source information is 
required for identifying whether exceedances 
are due to natural sources or to road salting 
and sanding (arts. 20 and 21), preparing air 
quality plans (Annex XV A), quantifying trans-
boundary pollution (Annex IV A), informing the 
public (Annex XVI), and demonstrating eligibil-
ity for the postponement of PM10 and NO2 limit 
value attainment (COM/2008/403).

Source Apportionment (SA) is the practice of 
deriving information about pollution sources 
and the amount they contribute to ambient air 
pollution levels. This task can be accomplished 
using three main approaches: emission inven-
tories, source-oriented models and receptor- 
oriented models. The objective of this document 
is to present the receptor-oriented methodology, 
explaining its role in the identification of sources 
with particular reference to particulate matter, 
and to describe the best practices for the avail-
able and emerging methodologies with a view 
to promoting their harmonisation across Europe.

Receptor-oriented models (also known as recep-
tor models (RMs)) apportion the measured mass 
of an atmospheric pollutant at a given site, 
called the receptor, to its emission sources by 
using multivariate analysis to solve a mass bal-
ance equation. These tools have the advantage 
of providing information derived from real-world 
measurements, including estimations of output 
uncertainty. However, there are limitations in 
their application to very reactive species. RMs 
are extensively used for the quantification of 
source contributions at local and regional scales 
all over the world. In the past decade, the num-
ber of scientific publications and applications in 
this field has been increasing steadily, and tools 
have been developed with improved capabilities 
in terms of source resolution and the accuracy 
of source contribution quantification.

This report is the result of the work of a group 
of international experts carried out within the 
framework of the JRC initiative for the harmo-
nisation of source apportionment with receptor 
models. This initiative was launched in collabo-
ration with the European networks in the field 
of air quality modelling (FAIRMODE) and meas-
urements (AQUILA). The initiative also includes 
a review of the methodologies used in Europe 
for source identification, and intercomparison 
exercises for the quantitative assessment of 
the performance of SA models.

The structure of this document follows the logi-
cal sequence of steps to be carried out in an 
SA study. The organisation of the report in sec-
tions of increasing levels of complexity makes 
it accessible to readers with different degrees 
of familiarity with this topic: from air quality 
managers to air pollution experts and model-
lers. The report has been conceived as a refer-
ence document that includes tutorials, technical 
recommendations and check lists. However, it 
is not intended to substitute practitioners’ 
experience and competence, which can only be 
acquired through training and working under 
the supervision of experts. 

The core part of the report focuses on the most 
commonly used RMs: Chemical Mass Balance 
(CMB) and Positive Matrix Factorization (PMF) 
models. The CMB model is a ‘least squares’ 
model which estimates source contributions 
on the basis of the chemical fingerprints of the 
source and the concentration of pollutants. The 
PMF model is based on uncertainty-weight-
ed factor analysis which relies on pollutant 
measurements. 

In addition, to promote the development and 
application of state-of-the-art methodologies, 
a section is also included on innovative and 
advanced methods, most of which are under 
continuous development. This section comprises 
trajectory and wind-based models, constrained 
and expanded models, the Aethalometer mod-
el, and models based on advanced spectromet-
ric measurements and isotopic analyses.
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Due to the high number of variables to be consid-
ered, SA studies are complex. Therefore, it is essen-
tial to support the final results with an appropriate 
description of the methodological choices made 
and documentation of the qualitative or quantita-
tive information that supports expert decisions. In 
this way, reviewers and final users, such as local 
air quality managers, are provided with the ele-
ments they need to assess the relevance of every 
study, and other modellers have the possibility to 
reproduce the methodology.

Moreover, it is essential that only methodolo-
gies fulfilling quality standards that are in line 
with the objectives of the study are adopted. To 
that end, the information about models’ perfor-
mance collected in the above-mentioned inter-
comparison exercises provides the necessary 
complement to the procedures described in this 
document. These exercises have demonstrated 
that RMs provide quantitative estimations of 
contributions by source categories that are 
consistent with a 50 % standard uncertainty 
criterion. It follows that SA studies consistent 
with the present protocol, especially with the 
steps concerning quality assurance, can claim 
state-of-the-art performance supported by 
European-wide intercomparison exercises.
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GLOSSARY

Chemical mass balance (CMB): models that 
solve the mass balance equation using effec-
tive variance least square. These are applied 
when the number and composition of sources 
are known.

Degrees of freedom: the number of independ-
ent observations minus the number of param-
eters estimated using them. 

Factor: an independent theoretical variable cal-
culated by linearly combining many measured 
dependent variables in order to describe their 
relationship patterns. 

Factor analytical methods: multivariate tech-
niques which do not require information on the 
number and composition of sources in the mod-
el input. In this document, factor analysis (FA) 
refers to techniques without intrinsic constraints.

Factor/source: the pollution-emitting entity 
identified in an SA study. Depending on the type 
of model used, the output may be a factor (mul-
tivariate analysis type) or a source (CMB type). 

Kronecker product (denoted by ): an opera-
tion performed on two matrices which, unlike 
the classical matrix multiplication, does not 
impose limitations on the dimension of the 
matrices being multiplied. 

Multivariate analysis: methods used to deal 
with datasets consisting of several measure-
ments (variables) for each object (sample unit).

Positive matrix factorization (PMF): a specific 
type of factor analytical method which uses 
experimental uncertainty for scaling matrix ele-
ments and constrains factor elements to be 
non-negative.

PM10, PM2.5: particulate matter with aerody-
namic diameter equal to or less than 10 and 
2.5 micrometres, respectively.

Receptor models (RMs): methodology to 
apportion the measured mass of air pollutants 
in one or more sites to their emission sources 
by solving a mass balance equation using mul-
tivariate analysis.

Source: a source of air pollution is any human 
activity or natural process that causes pollut-
ants to be released into the atmosphere.

Source apportionment (SA): the practice of 
deriving information about pollution sources 
and the amount they emit.

Source category: a group of sources that emit 
pollutants with similar chemical composition 
and time trends.

Source contribution estimate (SCE): quan-
titative output of an RM expressed as mass 
(µg m-3) that represents the amount of a pollut-
ant that can be attributed to a specific source 
or source category.

Source profile or fingerprint: the average rela-
tive chemical composition of the particulate 
matter deriving from a pollution source, com-
monly expressed as the ratio between the mass 
of every species to the total PM mass.
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ACRONYMS

AMS: Aerosol Mass Spectrometer
ACSM: Aerosol Chemical Speciation Monitor
APS: aerodynamic particle sizer
BDL: below the detection limit 
CEN: European Committee for Standardisation
CC: carbonatic carbon 
CTMs: chemical transport models
DL: detection limit
DRUM/RDI: Davis rotating-drum Universal-size-
cut Monitoring impactor 
EC: elemental carbon
EMEP: European Monitoring and Evaluation 
Programme
EPA: Environmental Protection Agency (US)
GC-MS: gas chromatography coupled with mass 
spectrometry 
GF-AAS: graphite furnace - atomic absorption 
spectrometry
HPLC: high-performance liquid chromatography 
IC: ion chromatography 
ICP-MS: inductively coupled plasma- mass 
spectrometry 
LS: least squares 
LOD: limit of detection
OC: organic carbon 
OM: organic matter
OPC: optical particle counter
PAHs: polyaromatic hydrocarbons 
PBL: planetary boundary layer
PIXE: particle-induced X-ray emission
PM: particulate matter
POC: primary organic carbon
RM: receptor model
SA: source apportionment
SMPS: scanning mobility particle sizer, 
SOC: secondary organic carbon
TC: total carbon
TOR: thermo optical reflectance 
TOT: thermal optical transmission
VOCs: volatile organic compounds
XRF: energy dispersive X-ray fluorescence 

RECEPTOR MODEL ACRONYMS

APCFA: absolute principal components factor 
analysis
APCA: absolute principal component analysis
CMB: chemical mass balance 
COPREM: constrained physical receptor model
CPF: conditional probability function
FA: factor analysis
ME-2: multilinear engine version 2
NWR: non-parametric wind regression 
PCA: principal components analysis
PMF: positive matrix factorization
PDRM: pseudo deterministic receptor model
PSCF: potential source contribution function
SoFi: Source Finder
SQTBA: simplified quantitative transport bias 
analysis 
TSA: trajectory sector analysis
TRMB: trajectory mass balance
TMBR: trajectory mass balance regression 
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PART A:  INTRODUCTION TO SOURCE APPORTIONMENT 
WITH RECEPTOR MODELS

European Guide and Harmonised Receptor 
Model Protocol: driving elements

The objective of this document is to dissemi-
nate and promote the best available operating 
procedures for source apportionment (SA) with 
receptor models (RMs) and to harmonise their 
application across Europe.

The target audience is: 

• practitioners involved in the model execution 
and in the interpretation of results,

• air quality managers interested in the out-
put of RMs for the design of abatement 
measures, 

• air quality experts and atmospheric scien-
tists not familiar with this methodology.

The structure of this document follows a logi-
cal sequence of steps to be carried out in an 
SA study, with different levels of complexity 
accessible to readers with different levels of 
expertise.

This document has been conceived as a guide 
(including tutorials, technical recommenda-
tions and check lists) that provides relevant 
references to the original information sources. 
However, it is not meant to be comprehensive, 
nor intended to substitute experience and com-
petence. Although the guide aims to promote 
the highest quality standards, it is subject to 
the intrinsic limitations of any SA methodology, 
which lie in the fact that the “true” contribution 
of sources to atmospheric pollution at a given 
point cannot be measured directly.

Organisation of the Guide

This document is the result of the collabora-
tion of leading European experts in the field of 
atmospheric pollution with the support of the 
P. K. Hopke of Clarkson University, New York, 
United States. It is structured in three parts.

Part A. Introduction to source apportionment 
with RMs describes the basic elements of SA 
and RMs.

Part B. Harmonised Receptor Model Protocol 
(hereafter referred to as ‘the Protocol’) is the 
core of the document. It contains a description 
of the steps to be taken in carrying out the most 
common and widespread RM techniques, with 
particular reference to Chemical Mass Balance 
and Factor Analysis.

Part C. Advanced Models describes innova-
tive and advanced methods, most of which are 
under continuous development. It also includes 
methods which, although they have been avail-
able for a long time, have not yet been exploit-
ed to their full potential.

Identification of pollution sources

Source Apportionment (SA) is the practice of 
deriving information about pollution sources 
and the amount they contribute to ambient air 
pollution levels.

Information on pollution sources is essen-
tial to the design of air quality policies and, 
therefore, SA is required explicitly or implic-
itly for the implementation of the Air Quality 
Directives (Dir. 2008/50/EC and Dir. 2004/107/
EC). Activities for which identification of pollu-
tion sources is relevant include: 

• Drawing up action plans

• Assessment of the effectiveness of abate-
ment measures (before and after)

• Application for the postponement of attain-
ing limit values (PM10, NO2)

• Quantification of pollution arising from:
- long-range transport

- transboundary transport

- natural sources

- winter sanding and salting
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Figure A.1. Schematic 
representation of the 
different methods for 
source identification.

• Identification of sources of pollutants that 
are of particular interest, e.g. polycyclic aro-
matic hydrocarbons (PAHs), ozone precur-
sor hydrocarbons, elemental carbon (black 
carbon).

Different approaches are used to determine and 
quantify the impacts of air pollution sources on 
air quality. Commonly used SA techniques are:

• Explorative methods

• Emission inventories

• Inverse modelling 

• Artificial neural networks

• Lagrangian models

• Gaussian models

• Eulerian models

• Receptor models 

Exploratory methods use simple mathematical 
relationships and a number of assumptions to 
achieve a preliminary estimation of the source 
contribution. 

Emission inventories are detailed compilations 
of the emissions from all source categories in a 
certain geographical area and within a specific 
year. Emissions are estimated by multiplying 
the intensity of each relevant activity (activity 
rate) by a pollutant-dependent proportionality 
constant (emission factor).

• In inverse modelling, air quality model 
parameters are estimated by fitting the mod-
el to the observations. The inverse technique 
consists of a least squares optimisation with 
an objective function defined as the sum of 
squared deviations between modelled and 
observed concentrations. 

• Artificial neural networks (ANN) are sets of 
interconnected simple processing elements 
(artificial neurons) which can exhibit com-
plex global behaviour. In order to produce a 
desired signal flow, algorithms designed to 
modulate the weights of the connections in 
the network are applied. 

• Lagrangian models use a moving frame of 
reference to describe the trajectories of sin-
gle or multiple particles as they move in the 
atmosphere.

• Gaussian plume models assume that tur-
bulent dispersion can be described using a 
Gaussian distribution profile. This type of 
model is often used to estimate emissions 
from industrial sources.

• Eulerian models encompass equations of 
motion, chemistry and other physical pro-
cesses that are solved at points arranged on 
a 3D grid.

Often, the terms ‘dispersion models’ or ‘source 
oriented models’ are used to refer to the lat-
ter three categories. Nevertheless, there are 
relevant differences in how these models are 
applied for source identification purposes. 

2. SOURCE ORIENTED MODELS

1. EMISSION
INVENTORIES

SOURCE
PROFILES

PHYSICAL AND CHEMICAL PROCESSES

CONCENTRATIONS 
AT THE RECEPTOR

METEOROLOGY

3. RECEPTOR ORIENTED MODELS

SOURCES
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Table A1. 
Main characteristics 
of RMs.

Receptor models (RMs) focus on the proper-
ties of the ambient environment at the point 
of impact, as opposed to the source-oriented 
dispersion models which account for transport, 
dilution, and other processes that take place 
between the source and the sampling or recep-
tor site (Figure A1). 

What are receptor models (RMs)?

The fundamental principle of receptor mod-
elling is that mass conservation between the 
emission source and the study site can be 
assumed, and a mass balance analysis can 
be used to identify and apportion sources of 
atmospheric pollutants. Table A.1 summarises 
the main characteristics of RMs.

RMs identify sources by solving the following 
mass balance equation:

     (A.1)

where xij
 is the concentration of the jth species in 

the ith sample, gik the contribution of kth source 
to the ith sample, fkj the concentration of the jth 
species in the kth source, and eij is the residual 
(i.e. the difference between the measured and 
fitted value) term. 

In order to find the solution, a dataset with 
a rather large amount of data consisting of 
chemical constituents (such as elemental con-
centrations) gathered from a number of obser-
vations (samples) is required. The larger the 
data matrix, the higher the chances that the 
model will identify distinct factors that can be 
identified as sources.

If the number and nature (composition profiles/
fingerprints) of the sources in the study area 
are known (fkj), then the only unknown term of 
equation (A.1) is the mass contribution of each 
source to each sample, gik. Solving the mass 
balance equation in this way was first inde-
pendently suggested by Winchester and Nifong 
(1971) and by Miller et al. (1972). The problem 
is typically solved using an effective-variance 
least-squares approach that is now gener-
ally referred to as the chemical mass balance 
(CMB) model (Watson, 1979, 1984). Since then, 
many models and methodologies have been 
developed and are still under continuous evolu-
tion. RMs have been traditionally classified into 
those which explicitly use information about 
the emission fingerprints (described above) and 
those which do not use any a priori informa-
tion on source chemical profiles (factor analysis 
methods).

Use measured concentrations at the receptor (sampling site)

Make reference to the chemical mass balance principle

Are based on the solution of multilinear equations 

At the first step do not consider physical and chemical processes, but evolved hybrid models can process 
additional information to constrain rotational uncertainty

Do not depend on emission inventories; source profiles (fingerprints) are required by certain kinds of RMs

Do not require complex meteorological and chemical processors

Require low computational intensity

Their application with reactive species requires correcting terms

Mainly used on particulate matter (PM) and seldom on hydrocarbons and inorganic gases

Appropriate for urban and regional scales
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Figure A.2. Approaches to 
estimate pollution sources 

with RMs (from Viana et 
al., 2008)

Table A2. Types of 
RM (adapted from Belis 

et al., 2013).

The main types of RMs are presented in Figure 
A.2 and Table A.2. A more detailed description 
and discussion of the most common RMs can 
be found in Watson et al. (2008), Viana et al. 
(2008), Hopke (2010), and Belis et al. (2013).

In the US, RMs are officially recognised and 
promoted as tools for air quality management 
(US-EPA SCRAM). Dedicated monitoring net-
works exist and a number of tools were devel-
oped and are freely distributed by the US-EPA. 
RMs are also used extensively in Europe, 
although the lack of a common approach and 
documented performance limits their applica-
tion to air quality policy.

The role of RMs in the identification 
of pollution sources

Within the activities of the Forum for Air 
Quality Modelling in Europe (FAIRMODE) group 
on “Contribution of natural sources and source 
apportionment”, two surveys were carried out 
on the type and frequency of modelling tools 
that are used in Europe for source apportion-
ment (Fragkou et al., 2012). The most recent of 
these surveys collected information on the use 

of models for the source apportionment of reg-
ulated pollutants and on the procedures used 
to evaluate the applied methodologies. The use 
of the different tools for source identification 
ranged from less than 20 % for Gaussian mod-
els to almost 60 % for receptor models (Figure 
A.3). Lagrangian (e.g. Lagrangian particle dis-
persion models) and Trajectory models were 
less frequently used and always complemen-
tary to other models. The use of CFD models 
was only reported in one case.

A study by Viana and co-authors carried out an 
overview of source apportionment studies in 
Europe from 1987 to 2007 by compiling meta-
data on 71 studies (see Table 1 page 831 of 
Viana et al., 2008) based on a questionnaire 
and existing publications. 

According to this study, PCA was the most fre-
quently used model up to 2005 (30 % of the 
studies), followed by the ‘Lenschow approach’ 
or incremental concentrations approach (11 %) 
and back-trajectory analysis (11 %). An increase 
in the use of PMF (13 %) and the mass balance 
analysis of chemical components (19 %) was 
observed from 2006 onwards.

Little

Multivariate
Models

Exploratory Factor
Analysis Models

Confirmatory Factor
Analysis Models

Chemical
Mass

Balance

Measurement Error
Models

Bayesian
Models Regression

Models

CMB

COPREMME

UNMIX
PMFPCA

Complete

Knowledge required about pollution sources prior to receptor modelling

Type Examples

Exploratory methods Enrichment factor, tracer method, incremental 
approach

Chemical Mass Balance EPA CMB 8.2

Eigenvector-based models PCA, UNMIX

Factor analysis without constraints FA, APCFA

Positive matrix factorization PMF2, EPA PMF v3

Hybrid trajectory-based models CPF, PSCF

Hybrid expanded models PMF solved with ME-2, COPREM

Legend: CMB, chemical mass balance; PCA, principal components analysis; FA, factor analysis; APCFA, absolute 
principal component factor analysis; PMF, positive matrix factorization; ME, multilinear engine; CPF, condi-
tional probability function; PSCF, potential source contribution function; COPREM: Constrained physical recep-
tor model.
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Figure A.3: Percentage of 

model types used for SA 

by different EU countries 

(from Fragkou et al., 

2012).

PM10 was the preferred target metric (46 %) 
followed by PM2.5 (33 %) and coarse fraction 
(PM2.5– 10; 9 %).The majority of the studies were 
carried out in urban background locations (53 % 
of the studies) while industrial or kerbside sites 
represented 11 % and 20 % of the studies, 
respectively. 

Overall, a generally good spatial coverage of 
SA studies over Europe, especially regarding 
the northern, south-eastern and south-western 
dimensions, was observed.

In this review, four main source categories 
across Europe were identified:

• Traffic sources, characterised by Carbon/Fe/
Ba/Zn/Cu, often including road dust;

• Mineral/crustal matter sources with Al/Si/Ca/
Fe as distinctive components; 

• Sea-salt, sea-spray and marine sources asso-
ciated with high Na/Cl/Mg concentrations;

• Regional-scale pollution and long-range 
transboundary anthropogenic pollution 
sources rich in either vanadium/nickel/sul-
phate or sulphate/nitrate/ammonium.

A survey on the use of receptor models (RMs) 
for particulate matter (PM) source apportion-
ment in Europe between 2001 and 2010, 
including 79 studies and 243 reported records 
(Karagulian and Belis, 2012), found evidence of 
a dramatic increase in the number of scientific 
publications on this topic during the past dec-
ade and an increasing number of ready-to-use 
tools (Figure A.4). The highest rate of increase in 
the number of studies coincides with the entry 
into force of the limit value for PM10 (1999/30/
EC) and the target value for PM2.5. About 60 % 
of the studies were carried out in urban back-
ground sites, 16 % in source-oriented sites 
(sites mainly affected by a single source), and 
15 % in rural sites.

0 10 20 30 40 50 60 70

Receptor

Eulerian

Lagrangian

Trajectory
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CFD

Percentage of model type used for SA by different EU countries

Countries % Questionnaires %
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Figure A.4. Time trend 
of RM studies in Europe 

between 2001 and 2010 
(from Karagulian & Belis, 

2012).

In contrast with the tendency observed 
between 1987 and 2005, the majority of the 
studies were performed using Positive Matrix 
Factorization and Chemical Mass Balance mod-
els in the period 2001-2010 (Figure A.4).

Most of the studies were conducted in Spain, 
Italy and the UK. Many recent studies com-
pleted or in progress were also carried out in 
France.

A detailed meta-analysis of data available 
from previous studies is presented in the most 
recent review of source identification studies, 
which covers the period until 2012 (Belis et al., 
2013). In order to compare all the SA results 
and to attain useful conclusions, sources have 
been pooled into six major categories covering 
those most frequently observed in the indi-
vidual studies: Sea/Road Salt, Crustal/Mineral 
Dust, Secondary Inorganic Aerosol (SIA), Traffic, 
Point Sources and Biomass Burning. In addition, 
residential heating by coal (or coal substitutes) 
combustion proved to be a major PM pollution 
source in many areas of the new EU Member 
States. Residential coal combustion in small 
stoves and boilers has also been found to be 
a main source of PM10 and benzo(a)pyrene in 
certain areas of Europe (Junninen et al., 2009). 

The main results of the above-mentioned review 
show that the field of receptor models is devel-
oping swiftly, with Positive Matrix Factorization 
and Chemical Mass Balance (which are the 
most used models) evolving towards tools with 
refined uncertainty treatment.

The review demonstrates that, aside from 
mineral dust and sea/road salt, PM10 and PM2.5 
derive from the same sources. Secondary pol-
lution deriving from gas-to-particle conversion 
is the main PM mass and particulate organic 
carbon source. Therefore, in order to reduce the 
concentration of these pollutants it is necessary 
to abate the sources of secondary inorganic 
aerosol deriving mainly from traffic emissions 
and agriculture. Primary emissions from traffic 
and biomass burning have also been identified 
as causes of exceedances, especially during the 
cold seasons.

The review stresses the need for long-term 
speciated PM datasets and the characterisa-
tion of source fingerprints to further improve 
source identification studies. In addition, har-
monisation of the different approaches would 
facilitate the interpretation and comparison of 
the results and their application in the design of 
abatement measures.

When to use receptor models (RMs)?

The application of RMs requires quantitative 
data on air pollutant concentrations, good 
knowledge about atmospheric processes, good 
command of the chemical nature of the source 
emissions, and competence in the use of com-
putational tools.

RMs have mainly been used to apportion air-
borne particulate matter sources. Therefore, 
the protocol presented in this report will mostly 
deal with this type of pollutant. However, it is 
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Figure A.5. JRC initiative 
for RM harmonisation.

also possible to use this methodology on vola-
tile organic compounds (VOCs), polyaromatic 
hydrocarbons (PAHs), inorganic gaseous pollut-
ants and particle size distribution.

If very little information is available on the 
study area or if skilled staff are not available 
for running the standard applications, explora-
tory methods can be used to obtain a pre-
liminary picture of the most relevant sources. 
Nevertheless, in order to achieve more accu-
rate estimations of the source contributions 
and their uncertainties, a well-designed study 
is necessary, including field work, laboratory 
analyses for the chemical characterisation and 
data processing with standard tools. 

Hybrid trajectory-based methods provide infor-
mation about the geographical origin of pollut-
ants. Advanced tools such as hybrid expanded 
models introduce a priori physical constraints 
in the model or combine different types of data 
(e.g. chemical and physical parameters, mete-
orology), making it possible to identify sources 
with small contributions and to better resolve 
similar or collinear ones.

Moreover, RMs can be used in combination 
with independent methodologies (e.g. emission 
inventories, chemical transport models (CTMs)) 
to achieve more robust estimations by mutual 
validation of the outputs.

Harmonisation of receptor models

Different methodologies for identifying sources 
are available. However, it is difficult to estab-
lish to what extent a methodology is appropri-
ate for a specific purpose and to quantitatively 
express the reliability of the results. This is 
mainly because the actual source contributions 
at a specific point are unknown. In addition, the 
techniques used by experts with different back-
grounds need to be harmonised so as to make 
the results of the different studies comparable. 
In order to address the challenges related to 
the use of modelling techniques in estimating 
pollution sources, the JRC launched an initiative 
in 2010 for the harmonisation of RMs used to 
identify pollution sources in Europe (Figure A.5, 
http://source-apportionment.jrc.ec.europa.eu/). 

The initiative, which involved experts from 
many European countries, consisted of three 
main activities: 

• reviewing RMs studies in Europe,

• organising  European-wide intercomparsion 
exercises for RMs and,

• developing a European harmonised technical 
protocol for RMs.

The initiative contributes to the activity of the Forum 
on Air Quality Modelling in Europe (FAIRMODE) 
Working Group on Source Apportionment.

The information about model performances col-
lected in the above-mentioned intercomparison 
exercises provides the necessary complement 
to the procedures described in this document. 
These exercises have demonstrated that RMs 
provide quantitative estimations of the contri-
butions of source categories with 50 % or lower 
standard uncertainty (Karagulian et al., 2012).

REVIEW OF RMs 
IN EUROPE

JRC INITIATIVE 
ON RECEPTOR 
MODELLING 

HARMONISATION

INTERCOMPARISON 
EXERCISE FOR RMs

assess the impact of the 
metodology, list  used 

tools and identify  needs 

Assess models’ 
performance and quantify 

their uncertainty

COMMON RECEPTOR 
MODELLING PROTOCOL

find common procedures and 
criteria to assure quality 
standards and improve 

comparability among studies

FAIRMODE WG ON
SOURCE APPORTIONMENT

contribute to the review of 
the EU thematic strategy 

on air  pollution

http://source-apportionment.jrc.ec.europa.eu
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Table B1. Common source 
categories of particulate 
matter (PM) in ambient air.

PART B: HARMONISED RECEPTOR MODEL PROTOCOL

B1. PRELIMINARY EVALUATION OF THE STUDY AREA

Collection of available data on atmospheric 
pollution

A sound source apportionment study requires 
careful preparation. The most important task 
in this step is the collection of all the relevant 
existing information about atmospheric pollu-
tion in the area under examination or in are-
as with similar characteristics. Bibliographic 
research should concentrate on both scientific 
publications and reports issued or sponsored by 
official bodies in charge of environmental moni-
toring that concern:

• emission inventories with a level of detail 
appropriate to the study (at least municipal-
ity or town level),

• local source profiles, 

• time series at different time resolutions 
(daily, yearly averages) and daily profiles of 
pollutant levels and exceedances of legal 
thresholds,

• spatial distribution of pollutants, hotspots,  

• meteorology at local and synoptic scale,

• previous source apportionment studies.

This step is essential to understand the nature 
and number of sources and the factors influ-
encing pollutant dispersion (e.g. advection) and 
transformation (e.g. gas-to-particle processes). 

The preliminary evaluation will be of great help 
in defining the objectives of the project and in 
planning the experimental work. To that end, 
it is also recommended that the local authori-
ties be interviewed to understand the kind of 
information on pollution sources for air qual-
ity assessment and planning they are inter-
ested in, gather information on the measures 
that have been proposed or implemented, and 
understand the limitations they have encoun-
tered in their enforcement.

Description of the physical system 

In addition to having a good conceptual under-
standing of the sources in the study area, it is 
important to understand the physical nature of 
the system. The topography, natural or artificial, 
has a significant influence on the local source-
receptor relationships (e.g. Chow et al., 2007; 
Belis et al., 2008), and a lack of understanding 
of the physical system can lead to problems 
in interpreting and understanding the source 
apportionment results. A number of aspects of 
the physical system should be identified and 
incorporated into the planning and execution of 
a project as well as in the analysis of the sub-
sequently generated data, in particular:

marine salt industrial emissions

crustal material secondary ammonium sulphate

road dust secondary ammonium nitrate

gasoline vehicle exhaust biomass burning / wood burning

diesel vehicle exhaust maritime transport

power plants secondary organic aerosol

More details on the most common sources of PM in Europe can be found in Viana et al. (2008) and Belis et al. 
(2013)
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• mountain / valley terrain,

• tall buildings, 

• water bodies,

• local source complexes (grouped sources), 

• isolated local sources, 

• major transportation information,

• prevailing wind directions, 

• distant sources.

Obstructions interfere with the direction of 
wind flows. People generally live in low-lying 
areas and thus often occupy valleys surrounded 
by obstructions (hills or mountains) that limit 
the wind directions to those found within the 
valley. Mountains can give rise to day-time 
upslope winds and night-time downslope winds. 
Tall buildings produce urban street canyons 
or block specific wind directions so that local 
meteorological measurements can be biased 
away from the actual wind directions. Water 
bodies also affect air flow locally (e.g. the influ-
ence of land-sea breezes). Thus, understand-
ing the geography as well as the natural and 
anthropogenic topography will be important in 
understanding source/receptor relationships for 
a given site.  

Sources can be contained in an industrial area 
that is well-delimited and/or isolated from oth-
er major sources. In the case of complex sourc-
es, the emitted pollutants come from roughly 
the same location and, if the temporal patterns 
of emissions are similar from multiple sources, 
methods that use the covariation of measured 
chemical species to identify specific source 
types will be confused by the simultaneous 
variation of the receptor-site impacts of emis-
sions from disparate sources. Isolated sources 
can provide the opportunity to carry out some 
local sampling in areas known to be highly 
affected by that specific source and thereby get 
an indication of the nature of that source. For 
any source, it is important to understand the 
nature of the activities being conducted at the 
site and thus, what materials are likely to be 
released to the environment.  

Transportation systems are sources of particles 
and other pollutants. Vehicles with combus-
tion engines clearly produce significant tailpipe 
emissions along with emissions from tyre and 
brake wear, re-suspension of road dust, and 
other related materials. Electrified systems 
such as trams, trains and electric buses also 
produce particulate emissions from the ablation 

of the runners that pick up the electricity from 
the wires and transfer it to the moving vehi-
cle. There may also be ablation from the steel 
wheels rolling and stopping on the steel rails. 
The location of highways and other transporta-
tion systems, the nature of the vehicles operat-
ing in the vicinity of the sampler, their operating 
pattern (highway speed, stop-and-go, etc.) and 
the prevailing wind directions may all influence 
the measurements at the receptor site. 

Prevailing wind directions determine the prob-
ability of emitted materials being transported 
to the measurement site. Sources with low 
probability wind directions are unlikely to make 
a large impact on a site (on the long-term aver-
age) even if they are significant emitters of the 
measured pollutant(s).

Although primary emissions are diluted over 
time and distance, secondary pollutants, e.g. 
produced by gas-to-particle conversion pro-
cesses, can increase the concentrations over 
relatively long distances, particularly for spe-
cies such as secondary sulphate and secondary 
organic aerosols that take time to form in the 
atmosphere.
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B2. DEFINING A METHODOLOGICAL FRAMEWORK 

Source apportionment studies should be 
planned in advance according to:

• the preliminary evaluation (section B1),

• the objectives of the study,

• the available resources (funds, staff skills, 
time),

• the model and software to be used, 

• the input data source (already available or 
data collection is needed),

• the required qualification of the operator and 
training needs.

Appropriate study planning prevents or reduces 
the risk of collecting useless information, miss-
ing relevant information for model execution or 
data interpretation, using resources inefficiently 
and/or building up a delay with respect to the 
scheduled deadlines. Useful advice for the 
definition of the methodological framework is 
available from Kim Oanh et al. (2009), Johnson 
et al. (2011), Watson et al. (2002) and Watson 
et al. (2008). The adoption of a quality man-
agement system (QMS) for the project could 
be useful to identify and document procedures, 
deliverables, responsibilities and deadlines (e.g. 
ISO 9001:2008). 

The preliminary evaluation achieved in the pre-
vious step provides the basis for defining the 
objectives of the study. 

At this point, the expert shall define the 
main questions he/she intends to answer. 
Subsequently, the main questions are trans-
lated into operational hypotheses and how the 
experimental work will contribute to test those 
hypotheses is clearly explained.

The objectives of the study must be in line with 
the available resources in terms of equipment, 
staff, and software. It is important to evaluate 
whether the required technical skills are pre-
sent in the team, to make sure there is access 

to the technical and methodological informa-
tion and, if possible, to collaborate with experts 
in institutions with demonstrated expertise in 
the field of source apportionment that can pro-
vide professional advice.

Selecting the type of model early in the plan-
ning process is also important as the kind of 
information to be collected depends on the 
model input variables:

• a chemical mass balance (CMB) model 
requires local source profiles as input;

• principal components analysis (PCA) and fac-
tor analysis do not require source profiles as 
input, but do require a very good knowledge 
of the study area in order to be able to inter-
pret the output factors in terms of source 
categories;

• positive matrix factorization (PMF) and CMB 
models need an uncertainty estimation for 
each data entry;

• advanced models also process other types of 
data: e.g. meteorological variables, trajecto-
ries, day of the week, size distribution.

The choice of the model should take into account 
the fact that running more than one model on 
the same dataset can mutually validate their 
outputs and lead to more robust results. This 
may require additional time and skills.

If the input data for the selected model is not 
available (as is almost always the case) it is 
necessary to plan field activity in order to col-
lect information on the ambient concentration 
of the pollutants of interest and the chemical 
profiles of local sources (see section B3). You 
may also need to collect meteorological data if 
this kind of information is not available close to 
your study site.
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B3.  EXPERIMENT DESIGN - CRITERIA FOR SITE AND 
SPECIES SELECTION AND ESTIMATION OF MINIMUM 
NUMBER OF SAMPLES 

Site Selection

For source apportionment, sites representa-
tive of the mixture of sources in a given area 
are preferable to sites influenced by specific 
sources. To establish the number and location 
of sources, it is necessary to study emission 
source distribution, wind roses and typical dis-
persion patterns (upwind, downwind of major 
sources). According to Kim Oanh et al. (2009), 
several sites are required to represent the dif-
ferent sub airsheds in a city. 

Stack height, temperature, mechanical buoy-
ancy, and temporal variation of emissions 
are important pieces of information for point 
sources. Additional information to evaluate the 
distribution of pollutants can be obtained from 
basic meteorological parameters and the levels 
of primary gaseous pollutants (Kim Oanh et al., 
2009).

Representativeness of monitoring sites and 
heterogeneity of the study areas can be tested 
using geostatistical methods. These techniques 
assess the relationship between the difference 
of concentrations in and distance between dif-
ferent sites by fitting functions known as “vario-
grams” (Clark & Harper, 2002; Kim et al., 2005, 
Hwang et al., 2008, Lagudu et al.; 2011, Kumar 
et al., 2012). 

In order to obtain estimations of source 
contributions in an area, a combination of 
multiple sites with the same or different char-
acteristics is commonly used. In the incremen-
tal or ‘Lenschow’ approach, the differences in 
contributions from traffic, urban background 
and rural or regional backgrounds is used to 
estimate sources. A more complex option is the 
combination of independent source contribu-
tion estimations for different sites (e.g. Larsen 
et al., 2012). The orientation of sites according 
to the main wind directions makes it possible to 
assess the contributions from medium- to long-
range transport (e.g. AIRPARIF and LSCE, 2012).

Species selection

The chemical species to include in the analy-
sis should be selected according to the study 
objectives, the site characteristics and expect-
ed sources, taking into account the available 
human, technical, and financial resources. 

Since RMs have mainly been used to appor-
tion sources of airborne particulate matter, 
this document focuses on this type of pollut-
ant (Table B3.1). Nevertheless, this methodol-
ogy has also been used on datasets containing 
volatile organic compounds (VOCs; e.g. Elbir et 
al. , 2007; Lanz et al., 2009; Niedojadlo et al., 
2007), polycyclic aromatic hydrocarbons (PAHs; 
e.g. Belis et al., 2012; Hanedar et al., 2011; Mari 
et al., 2010; Okuda et al., 2010)  and inorganic 
gaseous pollutants (e.g. Ogulei et al., 2006).
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Table B3.1 Examples of 
input data for source 

apportionment with RMs

Chemical species that are difficult to analyse 
or that yield anomalous values (commonly 
referred to as “weak elements” in PMF) tend to 
result in physically meaningless factors (Huang 
et al., 1999). For that reason, certain authors 
recommend that species considered unsuitable 
as source tracers be excluded. According to Ito 
et al. (2004), species that are not indicative of 
any source, or that are indicative of sources 
which are not relevant to the objectives of the 
study, can be discarded. However, the exclusion 
of species may lead to a loss of relevant infor-
mation if we consider that the concomitant vari-
ation of a set of species could be indicative of a 
source even though none of them is exclusively 
emitted by that source. Quite often, analytical 
protocols such as those of X-ray fluorescence 
(XRF) or gas chromatography coupled with 
mass spectrometry (GC-MS) are able to provide 
multiple species output at little or no addition-
al cost. The opportunity to take advantage of 
these “additional” species should not be ignored.

Using a reduced number of species could limit 
the number of sources that can be identified. 
Many multivariate methods like PMF and CMB 
are sensitive to collinearity. Increasing the num-
ber of species may help to reduce the collinear-
ity between different source or factor profiles, 
thereby increasing the number of sources that 
can potentially be resolved.

In order to prevent double mass counting, 
redundant species should be avoided. This 
could be the case with sulphur (S) and sulphate, 
between elements and their corresponding 
cations or between organic carbon / elemental 
carbon (OC/EC) and total carbon (TC). However, 
soluble potassium (K) can sometimes be a 

useful indicator of biomass burning and thus, 
soluble and insoluble K can both be included in 
the model where insoluble K = total K – soluble 
K. More generally, if the two species are pro-
portional to each other throughout the data-
set, then it does not matter which one is used. 
However, if they do not track each other, a bet-
ter separation of sources could be achieved by 
keeping both species in the dataset during the 
analysis. Double mass counting should be cor-
rected at a later stage by retaining only one of 
the species in the computed factor profiles.

The traditional approach in receptor models 
relies on a basic set of chemical species that 
represents most of the particulate mass such 
as major ions (sulphate, nitrate, and ammo-
nium) and the carbonaceous fraction (total 
organic carbon (TOC), OC/EC) plus a number of 
elements whose absolute and relative concen-
trations or specific ratios are used to identify 
sources (Miller et al., 1972). Although organic 
matter constitutes a considerable share of PM 
and has relevant influence on the physical and 
chemical properties and effects of the aerosol 
on health, the analytical techniques used in the 
past were not suitable for describing this frac-
tion in full. The development of mass spectrom-
etry made it possible to determine and identify 
organic compounds that are characteristic of 
certain sources called molecular markers. For 
example:

• levoglucosan, metoxyphenols (Simoneit, 
2002) and syringol are markers for biomass 
burning, 

Ions sulphate, nitrate, ammonium, chloride, Na+, Mg++, K+, Ca++

Carbonaceous fractions Total carbon (TC), elemental carbon (EC)/organic carbon (OC) total or 
fractions obtained in every analytical step

Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, 
Se, Br, Rb, Sr, Zr, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Te, I, Cs, Ba, La, W, Au, Hg, Pb

Organic markers n-alkanes, alkanoic (carboxylic) acids (especially fatty acids), aromatic 
carboxilic acids, levoglucosan/mannosan, PAHs, hopanes, resin acids, 
syringols, cholesterol

Aerosol size distribution scanning mobility particle sizer (SMPS), optical particle counter (OPC), 
aerodynamic particle sizer (APS), cascade impactors, streakers, Davis 
rotating-drum Universal-size-cut Monitoring impactor (DRUM/RDI)

Mass fragments (m/z) 
concentrations 

obtained with Aerosol Mass Spectrometer (AMS) or Aerosol Chemical 
Speciation Monitor (ACSM) techniques and used to apportion the organic 
fraction (see section C2).

Optical properties absorption coefficients to apportion Cff * and Cwb, * light scattering at mul-
tiple wavelengths (see section C3).

Isotopic ratios 14C/12C ratios to apportion fossil C and recent C (see section C5)

Radon indicator of planetary boundary layer (PBL) mixing and long-range pollu-
tion transport 

* Cff: carbonaceous fraction deriving from fossil fuel and Cwb: carbonaceous fraction deriving from wood burning.
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• hopanes and steranes for vehicle emissions 
(Cass, 1998; Schauer et al., 2002), 

• cholesterol and fatty acids for cooking emis-
sions (Chow et al., 2007; Zhao et al., 2007, 
Schauer et al., 1999), 

• benzene, di-, tri and tetra carboxylic acids, 
phthalates, branched ketones for second-
ary organic aerosols (Jaeckels et al., 2007; 
Subramanian et al., 2007). 

The inclusion of molecular markers in the set 
of species is often desirable but requires spe-
cific sampling and analytical techniques (Wang 
et al., 2012). Moreover, the development and 
availability of instruments to measure the opti-
cal properties of the aerosol (light scattering, 
light absorption) and its size distribution has 
led to studies in which this information is com-
bined with the chemical composition in order 
to better constrain the sources on the basis of 
their properties and the processes that pollut-
ants undergo in the atmosphere.

Mass concentration or number concentrations 
in particle size bins can be used as species 
together with chemical species (e.g. Gu et al. 
2011, Pere-Trepat et al., 2007; Pey et al., 2009; 
Zhou et al., 2005). For example, Ogulei et al. 
(2006) reported NO3- associated with particles 
larger than those associated with SO4

2-, and 
ultra-fine particles (UFP) associated with gaso-
line and diesel exhausts but not with the burn-
ing of vegetation. 

Number and frequency of samples

From the mathematical point of view, CMB can 
be executed with just one sample. In practice, 
many samples are required to obtain results 
that are representative of the variety of condi-
tions in the study area, including the variability 
of sources over time. By contrast, multivari-
ate techniques only work properly with large 
numbers of samples as input. According to the 
EPA PMF v3 User Guide (Norris et al., 2008), 
this method is often used on speciated PM2.5 
datasets with over 100 samples. At least 100 
samples of 24-hour data of at least 20 species 
are recommended by Brown & Hafner (2005). 
Johnson et al. (2001) claim that at least 50 
chemically characterised ambient samples 
are required for running multivariate models. 
According to Henry et al. (1984), the minimum 
number of samples (N) is the one that yields 
a ratio between degrees of freedom (D) and 
number of variables (V) that is higher than 60, 
while the optimal is one that leads to values 
above 100, according to the following equation:

D/V = N-(V/2-1.5)

On the other hand, Thurston and Spengler 
(1985) propose that the number of samples 
should exceed the number of variables by at 
least a factor of three.

In practice, the minimum number of samples 
required to detect the latent variables can-
not be established a priori as it depends on 
the amount of information contained in the 
dataset. If the relative contribution of sources 
were the same in all samples, analysing new 
samples would not add any new information to 
the model. Therefore, there should be enough 
samples to catch the variability of the sourc-
es, including samples where some sources are 
absent or negligible. 

Small datasets simultaneously obtained for 
several sites may be made usable for PMF 
analysis by pooling them into one matrix. This 
can be done, for example, for several urban 
background sites within a city (Xie et al., 2012), 
a larger region (Belis et al., 2011; Larsen et 
al., 2012; Mooibroek et al., 2009) or even for 
different site types to assess contributions of 
common sources (natural sources, Beuck et al., 
2011). 

In filter-based systems, the most common con-
figuration is the collection of 24-hour samples. 
This is in part due to the requirements of refer-
ence gravimetric methods for the determination 
of the PM mass. In addition, a 24-hour period 
is considered to be representative of all the 
sources occurring in one day-to-night cycle and 
hence an appropriate unit for data elaboration. A 
practical reason for selecting 24-hour sampling 
also derives from the need to collect enough PM 
for chemical analysis. This limitation is especially 
true for low-volume samplers when PM levels are 
low such as in areas that are located far from 
the sources or in seasons during which the main 
sources are not active. In urban areas, four- to 
six-hour sampling times usually allow for the col-
lection of enough material for major component 
analyses (e.g. Vecchi et al., 2009; Bernardoni et 
al., 2011). This configuration provides the oppor-
tunity to detect the daily trend of most sources, 
making their identification with receptor model-
ling more feasible. With high-volume samplers, 
two- to four-hour samples can be sufficient.

Higher time resolutions can be achieved using 
semi-continuous systems for chemical analy-
sis: particle-into-liquid samplers (PILS), semi-
continuous elements in aerosol systems (SEAS), 
monitoring instrument for aerosols and gasses 
(MARGA), semicontinuous EC/OC, with resolu-
tions ranging from a few minutes to one hour 
(see section B4). Streakers or DRUM/RDI sam-
plers also provide the opportunity to select the 
time resolution of the analysis on size-resolved 
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samples. Physical parameters associated with 
particle size or optical properties (scattering, 
absorption) can be obtained with time resolu-
tions close to a minute or less.

Time resolutions in the order of seconds and 
minutes can be obtained with online aerosol 
mass spectrometers (Pratt and Prather, 2011; 
Drewnick, 2012).
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B4. DATA COLLECTION / FIELD WORK / CHEMICAL ANALYSIS

The analytical techniques are selected on the 
basis of: particulate matter (PM) concentra-
tions, required detection limits (DLs) and uncer-
tainties, costs, access to laboratory facilities, 
and time resolution of the processes under 
study.

Sampling systems 

Offline chemical analysis of PM is commonly 
performed using filter-based methods.

Different size fractions and sampling flow rates 
are available. Since PM10 and PM2.5 are regu-
lated under Directive 2008/50/EC, reference 
methods exist (EN 12341 and EN 14907, cur-
rently under revision) and most experience and 
types of instruments are available in Europe 
(Lagler et al., 2011). The advantage of using 
these methods is that data can be compared 
with those in a wide number of sites. On the 
other hand, the current European legislation 
focuses more on total PM mass concentration 
than on the analysis of its chemical composition 
(analysis of major carbon fractions and ions 
are requested only for few rural/remote sites). 
Therefore, reference methods are not always 
the most appropriate for source apportionment. 
In the US there are samplers that are specially 
designed for PM speciation: “RAAS” (Andersen), 
“MASS” (URG), “SASS” (Met One), “Partisol 2300” 
(Thermo), among others (Solomon et al., 2000). 

The high-volume polyurethane foam (PUF) 
sampler, which has a large volumetric flow 
(hundreds L min-1), may be used in parallel with 
low-volume PM samplers to collect samples of 
semi-volatile organic compounds (SVOCs) in 
both PM and gaseous phases (Kim Oanh et al., 
2009).

Filter choice

The selection of filters is guided by the follow-
ing criteria: limited artefacts, compatibility with 
the analytical techniques, no interactions with 
the sample, low level of impurities, and high 
efficiency.

Commonly used filter matrices are pure quartz, 
coated quartz and Teflon, nylon, polycarbonate, 
glass fibre and cellulose esters. For a detailed 
discussion, see Chow (1995).

Significant differences are possible between 
sampling systems for organic carbon and nitrates 
due to loss of nitrate or either deposition or loss 
of organic carbon. In order to test the influence 
of deposition and loss of semi-volatile com-
pounds in filter-based methods, relatively com-
plex sampling systems equipped with denuders 
and double filters (front filter and backup filter) 
are required (e.g. Subramanian et al., 2004). 
Unlike CEN standards, the EMEP protocols rec-
ommend the application of these methodologies 
for the limitation and/or the estimation of posi-
tive and negative sampling artefacts. 

It is worth mentioning that only quartz fibre fil-
ters are suitable for the determination of ions, 
elements, and carbonaceous fractions (organic, 
elemental) on the same sampling support, as 
carbonaceous aerosols have to be analysed at 
elevated temperatures.

Most common analytical techniques

Organic carbon and elemental carbon (OC, EC), 
either total or by single temperature steps, are 
commonly measured using thermal-optical 
methods. These methods take advantage of the 
different behaviour of the various carbonaceous 
fractions (i.e. OC, EC, and carbonate carbon) when 
exposed to elevated temperatures and to light. 
OC evolves at lower temperatures than EC while 
the latter absorbs more light than the former. 
The main differences between the existing ther-
mal-optical methods (e.g. “NIOSH”, “IMPROVE” 
and “EUSAAR”) rely mainly on the temperature 
programs and on the devices used for optical 
measurements: Thermal Optical Transmission 
(TOT) or Thermo Optical Reflectance (TOR). More 
information can be found in Chow et al. (2004) 
and Cavalli et al. (2010). Since OC/EC analy-
ses are required by the European Air Quality 
Directive 2008/50/EC, a standardised procedure 
is currently under preparation by the working 
group 35 of the CEN technical committee 264.
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The methods most used for anions and cations 
are ion chromatography (IC) or automated col-
orimetric analysis. Also for these compounds, 
a standardised procedure is currently under 
preparation by the working group 34 of the CEN 
technical committee 264.

For inorganic elements, inductively coupled 
plasma - mass spectrometry (ICP-MS) and 
graphite furnace - atomic absorption spectrom-
etry (GF-AAS) which are the reference methods 
for the determination of metals (As, Cd, Ni and 
Pb) in PM10 (Standard EN 14902). Although 
some alteration cannot be excluded due to vac-
uum and slight heating (Yatkin and Gerboles, 
2013), energy dispersive X-ray fluorescence 
(XRF) is commonly used in source apportion-
ment because it covers many elements (from 
Na to U), does not require sample pre-treatment 
and does not destroy the samples. It also has 
good accuracy and repeatability, and automati-
sation of the analysis makes it possible to treat 
high numbers of samples with reduced costs. A 
similar technique, particle-induced X-ray emis-
sion (PIXE) is also suitable. Differences in detec-
tion limits (DL), when compared to XRF, are due 
to intrinsic features of the two techniques, such 

as different ionisation cross-sections for pho-
tons or protons and differences in the intensi-
ties of the continuous background (Calzolai et 
al., 2008). PIXE is more powerful than XRF in 
analysing very small samples (i.e. size-segre-
gated samples, high time-resolution samples or 
those collected in remote areas). The main limi-
tation is due to the availability of beam time at 
the accelerator facility where PIXE analysis can 
be carried out.

Organic compounds

PAH levels in PM10 are regulated under Directive 
2004/107/EC. The application of ISO standard 
12884 is recommended but there is no refer-
ence method in this case. Either GC-MS or high-
performance liquid chromatography (HPLC) 
methods are used for these compounds. Offline 
GC-MS is used to characterise a wide range 
of organic compounds (see table B3.1). More 
recently, the sensitivity of thermal desorption 
GC-MS methods has improved and, when com-
bined with in situ derivation, enables the iden-
tification of polar and non-polar components 
(Laskin et al., 2012).

Advanced User Box

Online monitoring techniques for PM composition

In online systems, sampling and analysis are integrated into a single instrument.

The determination of PM mass using online systems relies mostly on two operating principles: 
Tapered element oscillating microbalance (TEOM) and beta gauges.

Examples of online analytical instrumentation for ions are: 

a) Particle-Into-Liquid Sampler (PILS) developed by the Georgia Institute of Technology (Weber 
et al., 2001).

b) Monitoring instrument for aerosols and gasses (MARGA; Khylstov et al., 1995). 

For the analysis of elements the following methods are available:

a) Semi-continuous elements in aerosol system (SEAS), developed by University of Maryland 
(Kidwell and Ondov, 2001), and b) a modified version “SEAS II” and “KSEAS” (Lee et al., 2011).

A field-deployable system also exists to collect airborne particles and apply semi-continuous 
XRF analysis to the samples (Xact 620, Cooper Environmental Services). 

For carbonaceous fractions, a semi-continuous OC/EC analyser is available from Sunset (Bauer 
et al., 2009), although the measurements are not fully comparable with those obtained with 
the offline method (Belz et al., 2012).

Optical techniques for monitoring the aerosol light absorbance, such as the Multi-Angle 
Absorption Photometer (Petzold and Schönlinner, 2004) or the Aethalometers (Hansen et al. 
1984), are commonly used to estimate the carbon absorbing part of the aerosol, commonly 
known as Black Carbon. 

Finally, as described in section C.2, organic mass spectra can be obtained routinely using 
Aerosol Mass Spectrometers (AMS) or Aerosol Chemical Speciation Monitors (ACSM).
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There is a variety of techniques for the deter-
mination of anhydrosugars (e.g. levoglucosan). 
GC-MS-based methods have been extensively 
used, but different types of HPLC and IC tech-
niques have also been proposed (Schkolnik and 
Rudich, 2006).

Local source profiles (fingerprints)

Chemical fingerprints of local sources are of 
utmost importance in SA studies. The charac-
terisation of the most relevant sources in the 
study area should be included in the work pro-
gramme. Considering that local source charac-
terisation is resource consuming, it is possible 
to adopt fingerprints available from previous 
work in similar areas or obtained from source 
profile repositories (e.g. SPECIATE, US-EPA; 
http://www.epa.gov/ttnchie1/software/speci-
ate/). The sample collection varies from source 
to source. For pollutants deriving from combus-
tion processes, samples collected directly from 
the stack or exhaust at temperatures much 
higher than that of ambient air may lead to 
biases due to the absence of the condensed 
fraction in the particulate phase. To overcome 
this pitfall, it is possible to dilute the emissions 
with a known volume of clean air. An alterna-
tive is to sample the plume at a distance that 
allows the effluent to dilute and cool down to 
near ambient temperatures.  

Source-oriented monitoring stations can be used 
to characterise the source emissions if periods 
in which other sources influence the sample are 
excluded from the analysis. Characterisation of 
mobile sources can be obtained with samples 
collected in the lab (e.g. Montero et al., 2010; 
Adam et al., 2011), on the road (e.g. Georgios 
et al., 2012) or in tunnel experiments (e.g. El 
Haddad et al., 2009). 

Re-suspension of road dust and contributions 
deriving from industrial dust can be estimated 
by sampling deposits directly from the ground 
(Amato et al., 2009, Ashbaugh et al., 2003; 
Colombi et al., 2010). Samples of vehicle 
parts’ wear (tyres, brakes, clutch) can also be 
obtained directly by abrasion in the laboratory 
(e.g. Sjödim et al., 2010).
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Figure B5.1 Linear 
regression to test ion 
balance in PM (B. Larsen, 
unpublished).

B5. KNOWING YOUR DATASET: BASIC STATISTICS 

Before starting any kind of data treatment, it 
is good practice to make some summary plots 
and run some simple tests to gain an overview 
of the relationships between variables and how 
they change from sample to sample. Many 
commercial and free software applications are 
available that can carry out routine statistic 
tests (e.g. Statistica, Matlab, R, SPSS).

Central and dispersion statistics 

Box and whisker plots are useful to visualise 
central values of your variables (mean, median) 
and the dispersion of your data around the cen-
tral values (quartiles, minimum and maximum 
values). 

Check the statistical distribution that best 
describes your data

Quite often the air pollution data can be bet-
ter described using a log-normal distribution 
rather than a normal one. Many statistical tests 
assume that data is normally distributed even 
though small deviations from normality are 
acceptable. In order to better assess the results 
of standard statistical tests, knowing the statis-
tical distribution of your data could be useful. 
Box and whisker plots give a visual overview 

of the data spread that enables a preliminary 
assessment of the distribution. Visual tests of 
normality such as histograms, probability plots 
and normal probability plots are also useful. 
For an in-depth evaluation, normality tests 
such as Kolmogorov-Smirnov (Massey, 1951) 
or Shapiro-Wilk W (Shapiro and Wilk, 1965; 
Royston, 1982) can be applied.

Correlation matrices 

The correlation between variables can be visu-
ally assessed using scatter plots. This is par-
ticularly useful to identify anomalous data 
points (suspected outliers) that may affect the 
correlation. However, when many variables are 
involved the use of correlation matrices report-
ing the Pearson correlation coefficient (r) and 
related statistics for every possible pair of vari-
ables is a useful exploratory technique, provid-
ed the influence of outliers has been evaluated 
(see below).

Linear regression 

Ordinary Least Squares regression is the sim-
plest and quickest technique to more in-depth 
exploration of the association between two var-
iables. The evaluation of the curve parameters 
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Figure B5.2 Seasonal time 
trends in sulphates at 

Saint Louis supersite (Lee 
et al., 2006).

(intercept and slope and the determination 
coefficient (r2)) provides useful preliminary 
information to describe the (linear) relationship 
between the variables considered. Precaution 
should also be taken concerning outliers.

Time trends 

Plotting time trends of the variables makes it 
possible to identify regular patterns in data (e.g. 
seasonality, influence of the day of the week) or 
extraordinary events that probably indicate the 
impact of specific sources influencing the study 
area for short periods (e.g. Saharan events, wild 
fires). In addition, when hourly data are avail-
able, characteristic daily profiles of certain spe-
cies can be used to identify specific sources (e.g. 
a peak of traffic markers during rush hours).

Outliers

Values that do not follow the distribution of 
data with similar characteristics are referred to 
as outliers. They may reflect genuine properties 
of the studied system or derive from measure-
ment errors or anomalies that are not relevant 
for the model. Outliers can be extreme values 
or values with unusual relationships with other 
variables (e.g. ratio).

In some statistics software applications, values 
above or below the quartiles at a distance of 
1.5 - 2 times the interquartile range (height of 
the box) are labelled as outliers. Of the analyti-
cal tests to identify outliers (in normal distribu-
tions), the most commonly used is the Grubbs 
test. This is based on the difference between the 
mean of the sample and the most extreme or 
the two most extreme data values, considering 

the standard deviation (Grubbs, 1950, 1969). 
These tests help the practitioner to decide 
whether these data provide useful information 
on sources or whether they only introduce noise 
into the model. It is good practice to report the 
outliers excluded from the analysis and the 
reason for their exclusion.

Identify samples of special interest

In source apportionment (SA), it is important 
to distinguish between a one-off event with a 
unique profile and an episode that occurs due 
to the increased contribution from a source 
with a known profile that is already present in 
other samples. The analysis of ancillary data 
is useful to investigate the possible causes of 
anomalous samples identified with the previ-
ous techniques. Meteorological variables such 
as wind direction, precipitation, or extraordinary 
events such as forest fires, fireworks, or volcano 
eruptions may influence the levels of the stud-
ied pollutant for short periods. 

Spatial distribution

Spatial patterns can be only assessed when 
many sites are available. At this stage of the 
study, it can be checked whether the spatial 
variations of the chemical and physical prop-
erties of the aerosol are coherent with geo-
graphical gradients in variables that influence 
the emission of concentrations of atmospheric 
pollutants (e.g. NaCl is expected to be higher 
in sites close to the coast; e.g. Schaap et al., 
2010). 
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Figure B5.3. Ratio–ratio 
plots using data on 
B(ghi) P, Ind(123)P and EC 
to visualise the potential 
contribution of three 
source scenarios for 
ambient PM.

Ratio-ratio scatter plotting

By representing the concentration (in ambi-
ent PM) of two receptor species in a scatter 
plot, descriptive information can be obtained 
for an SA dataset in which few sources (or 
source types) contribute to these species. The 
data points in the plot will be distributed in an 
ordered manner between edges, delimited by 
the emission factors of these pairs of species 
for each source (type). The advantage of visu-
alising concentrations of receptor compounds 
in PM that are normalised to concentrations of 
reference compounds (e.g. EC) in two-dimen-
sional scatter plots was first demonstrated by 
Robinson et al. (2006). 
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B6. PRELIMINARY DATA QUALITY CHECKS 

Missing values 

In order to run a multivariate analysis, the 
entries in the dataset must comply with mini-
mum requirements. This applies in particular 
for factor analysis. It is a common misconcep-
tion that negative or zero concentrations are 
harmful for factor analyses. If a true value is 
zero or near zero, then there is a probability 
that the corresponding measured value will be 
negative. Such negative values should be kept 
in the dataset. They may be rejected only if 
their confidence interval does not include zero, 
which would obviously indicate a measurement 
error. If negative values are truncated to zero, 
then a modelling error is caused, and the data 
becomes biased. ‘Least squares’ (LS) meth-
ods are not appropriate for such kind of data. 
Unfortunately, some measurement techniques 
are not able to produce unbiased near-zero val-
ues. How to deal with such biased values is still 
an open question. The most promising approach 
in Multilinear Engine 2 (ME-2) seems to be to 
use error model code -16 (see box below).

Zero or negative uncertainties have no physi-
cal meaning and therefore should be excluded 
from the input file or replaced by reasonable 
values. Since it is not possible to perform the 
analysis when empty cells are present in the 
input data matrix, missing values should be 
handled in advance by the operator. The sim-
plest choice is to cancel the row (sample) or 
the column (species) from the input matrix. 
However, this may cause the loss of impor-
tant information. An alternative approach is 
to substitute missing values with estimated 
values, such as the mean, the median or the 
geometric mean of the measured concentra-
tions of the species, in all the samples of that 
particular study site (Polissar et al., 1998). The 
procedure by Polissar et al. (1998) is often used 
without testing its validity for any given data-
set. Scientists should find, for every dataset, 
the most suitable uncertainties of the substi-
tuted values to avoid distorting the model. In 
the EPA Unmix 6.0 receptor model, for instance, 
there is an automated subroutine that substi-
tutes missing values using the maximum and 

minimum ratios of the variable for which the 
value is missing (EPA Unmix 6.0 user manual). 
It should be noted that for any receptor model, 
the more missing values are reconstituted, the 
greater the uncertainty of the source contri-
bution estimates. As a rule of thumb, missing 
values substituted for a given species should 
not be more than half of the samples (Brown & 
Hafner, 2005).

Values below the detection Limit 

Values below the detection limit (BDL) of the 
analytical method should be used if they are 
available. If values are not provided by the 
laboratory they can be substituted either by 
zero (or by a value sufficiently close to zero), by 
the detection limit itself or by a fraction of the 
detection limit. The most common practice is to 
substitute BDL values with half of the detection 
limit (Polissar et al., 1998). Substitution of BDL 
values only makes sense if the number of val-
ues above the detection limit of that species in 
the dataset is sufficient to provide information 
about sources. It has been suggested that it is 
only worth including species that present more 
than 50 % of BDL values in the data treat-
ment if the signal-to-noise ratio is reasonable 
(see below) or the species is a tracer (Brown & 
Hafner, 2005). 

Note: the official nomenclature (IUPAC, 1997-
2006) defines detection limit (DL) as the 
minimum value that can be distinguished from 
the blanks, and limit of detection (LOD) as 
the blank value plus a multiple of the stand-
ard deviation of this measurement. In analyti-
cal chemistry, LOD is commonly considered to 
be the lowest analyte concentration at which 
detection is feasible; measurements below that 
value are reported as “<LOD”.
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Advanced User Box

There are cases in which the substitution 
of many values below the detection limit 
in several trace species creates an artifi-
cial factor containing trace species with a 
characteristic pattern. This “ghost factor” is 
generated by the model to fit the substi-
tuted values in all those species in which 
they occur simultaneously. When using 
ME-2-based analysis tools, it is possible 
to avoid such distortions by using the spe-
cial error model code -16 (Paatero, 2000) 
for all substituted data points. This code 
stipulates that all fitted values below the 
detection limit are to be considered a per-
fect fit, with Q contribution (see chapter 
B9) equal to zero. This alternative is not yet 
implemented in version 3.0 of the US - EPA 
Positive Matrix Factorization (PMF), but it 
may be used when controlling ME-2 using 
home-made scripts.

 Signal-to-noise

The signal-to-noise ratio (S/N) is defined as the 
power ratio between a desired signal (S, mean-
ingful information) and the background noise 
(N, unwanted signal).

In receptor model analysis this can be inter-
preted as the relationship between concen-
trations (x) and uncertainties (s) (Paatero and 
Hopke, 2003):

  (B6.1)

In the EPA PMF v3, the equation is even stricter 
and considers only the portion of the concen-
tration that exceeds the uncertainty (EPA-PMF 
3.0 User Guide):

    (B6.2)

During the European RM intercomparison 
(Karagulian et al., 2012), it was discovered that 
both of the above-mentioned equations for S/N 
fail totally if a species contains strongly down-
weighted values or if different matrix rows 
contain different scaling factors, e.g. some in 
mg and others in µg. The next version of the 
EPA PMF will contain an improved expression 
that should work well for all kinds of data, 
even those where different rows have different 

scaling factors. When using this new expres-
sion, the numerical limits for weak/bad/good 
discrimination must be changed from the cus-
tomary values shown below.

The signal-to-noise ratio is useful for classify-
ing variables according to the information they 
supply for the source identification analysis. 
According to Paatero and Hopke (2003), varia-
bles with signal-to-noise ratios below 0.2 (bad) 
are to be excluded from the analysis, while var-
iables where the ratio falls between 0.2 and 2.0 
(weak) are suitable for the analysis. However, it 
is recommended that such variables be down-
weighted by a factor of 1/2 or 1/3. 

Mass closure and ion balance

Preliminary tests exist to match the masses or 
the electric charges of species. In the first case, 
mass closure is accomplished by comparing the 
mass of particulate matter (PM) to the sum of 
the masses of the major chemical components. 
For this calculation, organic carbon (OC) is to 
be converted into organic matter (OM) using an 
empirical coefficient that normally ranges from 
1.4 to 2.1 (e.g. Turpin and Lim, 2001). The mass 
of crustal fraction must also be estimated from 
elements, as these are frequently present as 
oxides or carbonates. Therefore, the mass of 
the missing oxygen and carbon atoms should 
be added. The following empirical equations 
have been proposed to estimate these kinds 
of materials, by accounting for unmeasured 
oxides in minerals (Watson et al., 2002; Malm 
& Hand, 2007):

Geological = 1.89Al + 2.14Si + 1.4Ca +1.43Fe 
  (B6.3)

Soil = 2.2Al + 2.49Si +1.94Ti + 1.63Ca + 2.42Fe  
   (B6.4)

Commonly, the mass of PM, determined with the 
gravimetric method, is higher than the sum of 
the chemical components. This can be explained 
in different ways: a) not all the relevant chemi-
cal components have been determined; b) the 
mass measurement includes water adsorbed to 
particles that is not quantified in the chemical 
analyses; c) the selected coefficient for convert-
ing OC to OM is not optimal for the study area; 
d) the elements that have been assumed to be 
present as oxides and carbonate have not been 
taken into consideration.

By comparing the sum of anion equivalents 
with the sum of cation equivalents, it is pos-
sible to assess departure from neutrality, and 
plotting values in a graph helps to identify 
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samples with an atypical ionic composition. The 
most common ionic species in PM are inorganic 
cations (ammonium, sodium, potassium, calci-
um, and magnesium) and inorganic anions (sul-
phate, nitrate, chloride, and carbonate). Among 
the organic acids, the most relevant anions 
are those deriving from oxalic, malonic, suc-
cinic, formic, and acetic acids (Chebbi & Carlier, 
1996). 

It is also possible to develop simplified mass 
closure models which provide an excellent 
check on the consistency of data from indi-
vidual samples. An example is the Pragmatic 
Mass Closure Model (Harrison et al., 2003) 
which uses simple empirical parameterisations 
to account for the measured mass of particles 
in terms of a small number of analytical varia-
bles. Although such a model might be expected 
to be site-specific, it has proved to be transfer-
able between sites, years and particle size frac-
tions (Yin and Harrison, 2008). However, caution 
should be exercised in the application of the 
model to sites with entirely different pollution 
traits. Simple empirical corrections should be 
feasible in such cases.

Analysis of consistency in time and space

In order to populate a dataset with an appropri-
ate number of samples it may be necessary to 
collect data for more than one year. However, 
species and other variables collected during dif-
ferent years may show different relationships. 
In order to check these patterns before running 
the analysis, scatter plots to look for edges 
(Henry, 2003) or time trend plots are useful. 
Changes in sampling methodologies or ana-
lytical techniques may create disruption in time 
series that must be duly taken into account 
during data elaboration. Comparing time series 
from different sites is helpful to detect anoma-
lous patterns. Nevertheless, it must be consid-
ered that different monitoring networks may 
have different instrumentation (e.g. different 
inlets, different operation principles) or differ-
ent data treatment protocols.

If several receptor sites have been operated 
near each other, e.g. within one city area, then 
it may be useful to soft-constrain regional 
factors (more details on constrained models 
in section C4), such as secondary sulphate, in 
order to have similar factors at all sites. In this 
way, a significant part of rotational uncertainty 
may be avoided. It should be kept in mind that 
the secondary sulphate G factor often has no 
rotation-limiting zero values and hence is prone 
to rotations if no constraints are applied.
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B7. INPUT DATA UNCERTAINTY CALCULATION 

Uncertainty is the quantitative estimation of the 
quality of a measurement that makes it pos-
sible to compare results among themselves 
and with reference values (Joint Committee 
for Guides in Metrology (JCGM) 100:2008).  
Estimating the uncertainty of measurements is 
a common practice in analytical chemistry and 
physics that is performed routinely according to 
international criteria laid down in standards and 
implemented in reference methods. In analyti-
cal chemistry, uncertainty is evaluated both as 
the standard deviation of repeated observations 
and by comparison with reference materials. 

In source apportionment, analytical uncertainty 
is important since the most commonly used 
models, like PMF and CMB, require the uncer-
tainty of the species concentrations as input 
data in order to find the solution and the uncer-
tainty of the output. 

In PMF analysis, uncertainty estimation is par-
ticularly critical because every entry is weighted 
according to its uncertainty. Although analyti-
cal uncertainty estimation is an important step 
of receptor modelling, it must be noted that 
it is only one component of the overall input 
data uncertainty required by receptor models 
(Polissar et al., 1998). Other contributions to 
the overall uncertainty include flow rate uncer-
tainty, between-sampler uncertainty and other 
unidentified noise.

Moreover, not all components of overall uncer-
tainty behave equally. In PMF input, only the 
components of uncertainty that are capable of 
generating residuals, i.e. components that will 
increase the Q value of the fit (see section B9), 
should be included. Flow rate uncertainty is a 
prime example: flow rate variations influence 
all values on a matrix row by the same multi-
plier, hence causing no increase of residuals eij 
(equation A.1). Flow rate uncertainty, and other 
similar uncertainties, should bypass the PMF 
stage and be attached directly to the computed 
G factor elements (equation A.1). In addition 
to analytic uncertainty, modelling errors (e.g. 
variation of source profiles with time, chemical 
transformations during transport from source 

to receptor) also cause residuals in PMF mod-
elling. Expected contributions from modelling 
errors must also be accounted for in the PMF 
input data uncertainties. There is no fixed rule 
for such contributions. To begin with, it is rea-
sonable to include 10 % of each data value as a 
provision for modelling errors. When experience 
is accumulated, this numerical coefficient may 
be adjusted. However, this additional uncertain-
ty must always be reported in publications so 
that the work is reproducible.

The operator also needs to attribute an uncer-
tainty to missing values and to values below 
the detection limit. That uncertainty is normally 
higher than that of measured values. Polissar et 
al. (1998) set the uncertainty of values below the 
detection limit to 5/6 of the detection limit, while 
the uncertainty of missing values is by conven-
tion set at four times the geometric mean. This 
convention has no general statistical basis. For 
some datasets, significantly larger uncertainty 
values are needed for missing values.

Sometimes the attribution of uncertainties may 
be achieved by a trial-and-error process that 
aims to obtain the best model fit which is evalu-
ated using Q values (see paragraph B9), scatter-
plots, distribution of residuals and results from 
multiple regressions (e.g. Polissar et al., 2001). 

When dealing with databases in which single 
entry uncertainties are unavailable or are inap-
propriate for modelling purposes, the global 
input data uncertainties may be estimated 
using equation-based approaches, which rely 
on the species detection limit (DL), empirical 
constants (k), species concentration (C) and/
or the coefficient of variation (CV) (Reff et al., 
2007, Karagulian & Belis, 2012).

Analytical uncertainty can be estimated by the 
linear regression described in equation B7.1 
where σa is the uncertainty of the analytical pro-
cedure, m is the mass of the analyte, and σ0 and  
α are fitting parameters (Anttila et al., 1995): 

                                                    (B7.1)
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In the estimated fractional uncertainties (EFU) 
method the error structures (sij) are (Kim and 
Hopke, 2005):

  (B7. 2)

When no empirical constants are used other 
than the DL and coefficient of variation (CV), 
the analytical uncertainty is (Chow et al., 2007):

                                (B7.3)

Sampling contributes to the uncertainty of 
measured values due to sampling volume 
uncertainty, selective effect and other artefacts 
caused by the sampler inlet, and losses due to 
sample transport and conservation. These con-
tributions can be assessed with field tests (e.g. 
collocated measurements and comparison with 
reference instrumentation and techniques). In 
the case of destructive analysis of the filters 
where PM is collected, the procedure of sub-
tracting blank filter (different from sampled 
ones) concentrations is an additional source 
of uncertainty. Sampling and blank subtraction 
uncertainties have been incorporated into the 
input data uncertainty by Amato et al. (2009):

  (B7.4)

    
  (B7.5)

where the standard deviation of species con-
centrations in blank filters (σBLK), the sampled 
volume (Vi) and a coefficient (β) are used to 
account for the additional uncertainty sources. 

Input data uncertainties can also be estimated 
with the PMF2 software. This is a more complex 
procedure that uses three codes, C1, C2 and 
C3, the error model and the arrays T, U and V 
(Paatero, 2004).

CMB uses source profiles as input data with 
associated uncertainty estimation. When 
source profiles are too similar, CMB may be not 
able to find a solution (collinearity). In order to 
prevent problems related to collinearity, sourc-
es with similar chemical composition are either 
combined into source categories / composite 
profiles or only one profile is incorporated in the 
analysis while the other is dropped. The uncer-
tainty of the composite is obtained by propa-
gation of the uncertainty of the pooled single 
profiles (Watson, 2004). However, this may not 
fully account for the variety of similar sources 
in the study area and their variability over time. 

In order to deal with the variability of source 
profiles, initial model runs often contain many 
profiles, and a sensibility test should be car-
ried out to assess their influence on the pre-
cision and stability of the source contribution 
estimates.

A default value of zero with a standard devia-
tion equal to the analytical detection limit may 
be assigned to a species of a source profile if 
that species is known to be absent from that 
source (Watson, 2004) .

Metals are excellent receptor species given the 
assumption that such receptor species do not 
chemically react or physically repartition dur-
ing transport from source to receptor. As such, 
metals have been used from the very begin-
ning of receptor modelling activities (e.g. Hopke 
et al., 1991). However, in the search for spe-
cific receptor species for different combustion 
sources (also called molecular markers), the 
use of organic chemical compounds has grown 
popular in modern source apportionment stud-
ies, even though this class of compounds often 
comes into conflict with the above-mentioned 
assumption. An interesting utilisation of uncer-
tainty data for the inclusion of semi-volatile 
and photo-chemically reactive species in CMB 
and PMF has been developed and adopted by 
Latella et al. (2005), Junninen et al. (2009), 
Belis et al. (2011) and Larsen et al. (2012). In 
these studies, methods are described for using 
information on volatility to account for the 
re-partitioning processes (PAHs; semi-volatile 
organic carbon fraction) and photochemical 
degradation (hydrocarbons, levoglucosan) from 
source to receptor. This information has served 
as error-input to CMB and PMF for the error 
weighting in the statistical procedures.
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B8. CHEMICAL MASS BALANCE MODELS 

Chemical Mass Balance (CMB) is based on the 
mass conservation of individual chemical spe-
cies: ions, elements, and organic compounds, 
which are commonly referred to as markers. 
In the mass conservation equations, deriving 
from the general equation A.1 (here the origi-
nal notation was kept to facilitate consultation 
of the references and our notation is reported 
between parentheses), known concentrations 
Cik (xij) of specific species at a receptor site k are 
written as the product of unknown source con-
tributions sjk (gik) and known source profiles aij 
(fkj) (Cooper et al., 1984; Watson et al., 1998). aij 
(fkj) are the fractional abundances of the species 
in the source emissions, commonly expressed 
by the ratios between the species and the PM2.5 
or organic carbon mass. The mass conservation 
equations for each species emitted from m (p) 
sources can be written as follows:

                                                      (B8.1)

In practice, the set of linear equations generat-
ed by equation B8.1 is solved with an effective 
variance-weighted least square method using 
the EPA-CMB8.2 software. Note that although 
equation B8.1 is similar to equation A.1 (in this 
case aij (fkj) are known values), the model is 
conceived for one sample per site and has no 
residual term.

Friedlander (1973) proposed a modified version 
of equation B8.1 that included a coefficient, 
αij, that accounted for changes in the profile 
values for specific species in transit. However, 
the current practice is to apportion the primary 
material that has not changed between source 
and receptor, so this coefficient is set to 1. The 
remaining quantities of reactive species such as 
ammonium, nitrate, sulphate, and organic car-
bon are then indirectly apportioned to second-
ary sources. Accordingly, the species used as 
fitting species are strictly of primary origin. They 
must be (i) stable during atmospheric transport 
(i.e. low volatility and moderately reactive), (ii) 
accurately determined at the receptor site and 
(iii) reported for all source profiles considered 

in the model. The number of fitting species has 
to exceed the number m of emission sources. 
The first attempts to solve the mass balance 
equation were based on tracer compounds 
(ideally one for each source, e.g. Miller, 1972). 
Since inorganic compounds rarely derive from 
a single source, this approach gave way to 
another that considers a higher number of 
species than sources. This latter approach was 
fully developed in the Chemical Mass Balance 
Model as described by Watson et al. (1997), 
among others. More recently, the identification 
of organic compounds that can be used as trac-
ers for specific sources or types of sources (e.g. 
Schauer, 1999a and b) led to a combination of 
both approaches, i.e. containing more species 
than sources but including some organic spe-
cies (tracer or markers) deriving from unique 
sources (e.g. Chow, 2007; Subramanian, 2006).

The main strength of the CMB model is that, 
unlike other statistical receptor models (e.g. 
PMF), it does not require a large dataset and 
theoretically equation B8.1 can be solved for an 
individual sample (see section B3). Moreover, 
unlike factor analysis techniques, the CMB out-
put does not require additional identification of 
the contributing sources/factors, as the profiles 
are selected a priori for well-defined sources.

However, the most important issue generally 
encountered in CMB modelling is the selection 
of the source profiles that best represent the 
aerosol collected at the receptor site. This selec-
tion relies heavily on two implicit assumptions:

(i)  The aggregate emissions from a given 
source class are well represented by an 
average source profile with well-known aij 
ratios.

(ii)   All the major primary sources of the species 
are included in the model.

With most commonly measured species for 
particles (e.g. ions, elements, carbon and 
organic compounds) and common source types, 
approximately four to eight primary source 
classes are linearly independent and can thus 
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be apportioned by the CMB. These conven-
tionally comprise traffic emissions which are 
often separated between diesel and gasoline 
combustion engines, biomass burning, veg-
etative detritus, cooking emissions and dust 
(e.g. Zheng et al., 2006a and b; Sheesley et al., 
2007; Docherty et al., 2008; Stone et al., 2008; 
Favez et al., 2010). Additional profiles can also 
be selected to specifically represent the area 
of study, including coal burning (Rutter et al., 
2009), metal smelting (El Haddad et al., 2011), 
metallurgical coke production (Subramanian et 
al., 2007; El Haddad et al., 2011) and shipping/
heavy fuel oil combustion (Minguillon et al., 
2008; El Haddad et al., 2011).

Currently in the literature, there are a great 
number of profiles and composite profiles for 
the major primary sources (e.g. more than 50 
profiles for traffic emissions and more than 
40 profiles for biomass smoke). A compari-
son of these profiles reveals significant varia-
tions in emissions depending on the fuel type 
and combustion conditions, rendering the 
choice between these profiles very complex. 
Subramanian et al. (2007) show that library 
profiles may not always reflect the properties 
of a specific source in a given study area.

To achieve CMB analysis and validation, a num-
ber of steps must be followed.

First, for each source, several profiles and com-
posite profiles have to be selected based on 
the specificity of the study area (e.g. harbour, 
industries, wood or coal burning, predominance 
of diesel cars, etc.) and the species concentra-
tions at the receptor site. Examining diagnostic 
ratios between species can help to eliminate 
outlier profiles (Robinson et al., 2006a, b and 
c; El Haddad et al., 2011). Constructing com-
posite profiles from available data (Sheesley 
et al., 2007; Favez et al., 2010) or developing 
new source profiles through real world meas-
urements, for instance tunnel experiments (e.g. 
Phuleria et al., 2006; El Haddad et al., 2009) 
and open fires (e.g. Lee et al., 2005), are also 
common practices carried out to better repre-
sent the emissions in the study area.

Second, the model is run repeatedly, including 
different combinations of the selected profiles. 
Based on the quality of the CMB solutions, the 
best combinations can be selected. The sensi-
tivity of the results to the choice of the profiles 
and the related uncertainties can be assessed. 
As a quality control check of the CMB calcula-
tion, statistical performance measures include 
the use of R-square (target 0.8–1.0), chi-square 
(target 0–4.0) and the species’ calculated-to-
measured ratios (target 0.5<C/M<2), as indica-
tors of the goodness of fit (Watson et al., 1998). 

If the CMB solutions do not meet these criteria, 
it would mean that one of the two aforemen-
tioned assumptions is transgressed (i.e. non-
representative or missing profiles). 

The CMB also provides the uncertainties of the 
source contribution estimates by propagating 
the uncertainty estimates of the receptor data 
and source profiles (entered as input by the 
operator) through the effective-variance least 
squares calculations. Their magnitudes are a 
function of the uncertainties in the input data 
and of the amount of collinearity (i.e. degree of 
similarity) among source profiles. Two or three 
times the standard error may be taken as an 
upper limit of the source contribution.

Third, CMB is often applied to the carbona-
ceous component of PM and, if the results are 
combined with those of other analytes using 
a simple mass closure approach, this can be a 
valuable check on data quality (e.g. Yin et al., 
2010). A further useful check is whether the 
concentration of organic carbon unaccounted 
for in a CMB model and assumed to be second-
ary in origin can be compared with independent 
estimates of secondary organic carbon derived 
using the elemental carbon tracer method as 
reported by Yin et al. (2010).

When available, soluble potassium, water-
soluble organic carbon, radiocarbon and 
Aethalometer measurements can also help cor-
roborate the CMB outputs, especially in the case 
of high contributions from secondary organic 
aerosols and biomass burning organic aerosols 
(e.g. Docherty et al., 2008; Favez et al., 2010).
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B9.  FACTOR ANALYSIS I: SELECTION OF THE NUMBER OF 
FACTORS AND DEALING WITH ROTATIONAL AMBIGUITY 
(PMF) 

The goal of Positive Matrix Factorization (PMF) - 
like any other multivariate receptor model (RM) 
- is to identify a number of factors p, the spe-
cies profile f of each source, and the amount 
of mass g contributed by each factor to each 
individual sample (equation A.1).

PMF is an advanced factor analysis technique 
based on the work of Paatero and Tapper 
(1994); it uses realistic error estimates to 
weigh data values and imposes non-negativity 
constraints in the factor computational process. 
Briefly, it is a weighted least squares fit, with 
weights based on the known standard uncer-
tainties of the element concentrations in the 
data matrix. The factor model PMF can be writ-
ten as: 

X = G · F + E (B9.1)

where X is the known n by m matrix of the 
m-measured chemical species in n samples. G 
is an n by p matrix of source contributions to 
the samples (time variations of factors scores). 
F is a p by m matrix of source compositions 
(source profiles). G and F are factor matrices to 
be determined, and E is defined as a residual 
matrix i.e. the difference between the measure-
ment X and the model Y = G · F as a function 
of G and F. 

Two common programs solve the PMF problem 
described above: PMF2 (Paatero, 2010) and 
the multilinear engine (ME) platform (Paatero, 
1999) that is used in the EPA PMF v3 tool. 

It is well known that factor analysis can give 
a number of possible solutions, all mathemati-
cally correct. The choice of the best solution in 
PMF analysis, e.g. the number of factors that 
best represent the real case under study, shall 
be supported by quantitative indicators (Hopke, 
2000; Reff et al., 2007).

Examining the Q-value

The Q-value is a goodness of fit parameter, 
the evaluation of which may give useful indi-
cations when the data-point uncertainties are 
well determined. 

The theoretical Q-value is approximately equal 
to the number of degrees of freedom or to the 
total number of good data points in the input 
data array minus the total number of fitted 
factor elements. If the errors are properly esti-
mated, it can be seen that fitting each good 
(not weak) data point in such a way that the 
fitted value falls within the estimated error val-
ue, contributes a value of approximately 1 to 
the Q-value. Contributions resulting from fit-
ting downweighted weak values are usually so 
small that they may be ignored.

The theoretical Q-value can be approximated 
by the user as nm – p(n+m), where n is the 
number of species, m is the number of samples 
in the dataset, and p is the number of factors 
fitted by the model (Paatero and Hopke, 2009).

It is useful to look at the changes in the Q-value 
as additional factors are calculated. After an 
appropriate number of factors are included in 
the fit, additional factors will not result in fur-
ther significant improvements in the Q-value. 

It should be noted that the absolute level of 
Q-values depends strongly on the assumed uncer-
tainties. Usually, it is not recommended to change 
uncertainties just to get closer to the theoretical 
Q-value (Brown and Hafner, 2005). If uncertain-
ties have been adjusted so as to produce a rea-
sonable Q-value, then the Q-value can no longer 
be considered a goodness of fit indicator (Paatero, 
2010). However, the differences of Q-values 
obtained with different numbers of factors are 
useful indicators even with adjusted uncertainties. 
If introducing another factor lowers the Q-value 
only by the number of additional factor elements, 
then the introduced factor should be rejected.
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Useful information can be retrieved by com-
paring the theoretical Q-value to Q(true) and 
Q(robust) values, which are output by each 
run of the EPA-PMF. Q(robust) is calculated by 
excluding outliers and the Q(true) includes all 
points. Solutions where Q(true) is 1.5 times 
greater than Q(robust) may indicate that the 
model is inconsistently modelling the data. 
Outliers may be causing this, and can be 
downweighted by the user so that they have 
less influence in the model (Brown and Hafner, 
2005; Paatero, 2010). Weak variables (i.e. spe-
cies with low S/N values as defined in para-
graph B6) may also be downweighted. 

A good fit of the data is characterised by val-
ues for Q(robust) and Q(true) that are near to 
the theoretical Q-value calculated by the user 
(Brown and Hafner, 2005).

Examining the scaled residuals

The scaled residual is the ratio of the PMF-
modelled residual eij to the input uncertainty σij:

                                  (B9.2)

In PMF analysis, plotting the scaled residuals 
is also useful in choosing the final number of 
factors. These residuals should be symmetri-
cally distributed within a range of -3 to +3 
(and preferably less). If the scaled residuals are 
especially large (<<-3 or >>+3) for certain vari-
ables, then one may consider that perhaps the 
uncertainties specified for these variables are 
too small. If the scaled residuals are especially 
small (close to zero) for one variable, then either 
overly large uncertainties have been specified 
or this variable is explained by a unique factor. 
It may be acceptable to have a unique factor 
for a specific variable, but it must make physi-
cal/chemical sense for the problem under con-
sideration. A spurious unique factor may arise 
if uncertainties that are too small are specified 
for a species. Too many very narrow distribu-
tions suggest the presence of too many factors 
such that the solution is fitting the errors rather 
than the concentration values. A strong skew-
ness in the scaled residual plots suggests that 
the fit is not correct and that other solutions 
should be sought.

Examining the regression parameters

If in the original dataset there is a good mass 
closure (i.e. the sum of the mass of the sin-
gle chemical components is close to the gravi-
metric mass), the “external mass” method - i.e. 
where the PM mass is not included in the data 
array analysed by PMF - can be applied. In this 
case, the measured mass is regressed against 
the estimated source contribution values. If the 

regression produces negative parameters, then 
too many factors have been included in the 
solution (Kim et al., 2003), or a strong source 
does not emit any of the measured species and 
hence is not represented in any factor but only 
in PM mass.

The regression parameters can be also used to 
obtain the scaled source/factor profiles. Once the 
source profiles are scaled, they can be summed 
and it can be determined whether the sum of 
a source/factor profile exceeds 100 % (within a 
20 % tolerance level to account for errors). If this 
is the case, too few factors may have been cho-
sen (Kim et al., 2003; Hopke, pers. comm.). 

Examining the species/mass reconstruction

The appropriateness of the chosen solution can 
be also assessed by looking at the mass/spe-
cies reconstruction, which should improve when 
approaching the best solution.

In the EPA-PMF, there is a regression analysis 
of the variable with its reconstructed values 
that provides some measure of the fit to the 
measurements. However, these regressions are 
unweighted and, thus, values that are below the 
detection limit or are missing have a large influ-
ence on the results and can produce degraded 
r2 values (see chapter B5). To overcome this 
issue, regressions with weighted values should 
be calculated manually. 

Examining the IM and IS parameters

The maximum individual column mean (IM) and 
the maximum individual column standard devi-
ation (IS) parameters can be also used to iden-
tify the number of factors in a PMF. When the 
number of factors increases to a critical value, 
the IM and IS values will drop dramatically (Lee 
et al., 1999).

Examining multiple solutions

It is essential to perform the PMF analysis sev-
eral times (typically 20) to be certain that the 
same solution is obtained. A test for the best 
selection of the number of factors is that one 
does not obtain multiple solutions or obtains at 
most one alternative solution. With greater or 
fewer factors than the optimum, multiple solu-
tions are more often obtained.

In general, any bilinear factor analysis has rota-
tional ambiguity. In other words, there is no 
unique solution even though there is a global 
minimum in the ‘least squares’ fitting process. 
The addition of constraints can reduce the rota-
tional freedom in the system, but non-negativ-
ity alone does not generally result in a unique 
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solution. One of the key features of PMF is that 
the rotations are part of the fitting process and 
are not applied after the extraction of the fac-
tors, as is done in eigenvector-based methods.

Controlling rotations by the FPEAK value

FPEAK is a parameter used to explore the 
rotational ambiguity of a PMF solution a pos-
teriori. Assigning positive or negative FPEAK 
values produces rotations of which the suit-
ability is assessed by observing the changes 
of the Q-value and the G and F factors. The 
mathematically optimum solution in PMF is 
FPEAK=0.0. Therefore, in the absence of any 
other consideration such as G-space plots 
(see below), and unless there is a substantial 
improvement in the interpretability of the pro-
files, the best fit is given by FPEAK = 0.0. 

Controlling rotations by imposing external 
information

PMF rotations can also be controlled by impos-
ing external information on the solution. 

Fkey and Gkey constraints consist of binding 
individual elements of the F and G matrices, 
respectively, to zero. If specific values of pro-
files or time series are known to be zero, then 
it is possible to force the solution toward zero 
for those values through appropriate settings 
of the rotational tools Fkey and Gkey values in 
PMF2. Controls can be applied through modi-
fying the script in Multilinear Engine-2 (ME-2) 
applications (see chapter C4). Additional flex-
ibility in applying external constraints will be 
available in future releases of the EPA PMF.

Controlling rotations by examining 
G-space plots

G-space plots are source contribution scatter plots 
for pairs of factors (Paatero et al., 2005). When 
factors are plotted in this way, unrealistic rota-
tions appear as oblique edges that define correla-
tion between the factors. Edges are well-defined 
straight borders between regions that are densely 
populated with points and regions where no points 
occur. With a correct rotation, the limiting edges 
usually coincide with, or are parallel to, the axes. 

Inspection of the plots helps choose a realistic 
rotation, but one must bear in mind the fact 
that specific physical situations might occur 
where there is an oblique edge even though 
a realistic rotation has been achieved. As an 
example, correlations could be induced by co-
location of the sources coupled with meteor-
ology (i.e. emissions from independent sources 
may have a certain degree of correlation due to 
the influence of meteorology).

It must be also emphasised that the presence 
of aligned edges in G-plots of factors does not 
necessarily guarantee that a unique rotation 
has been found. Although uniqueness will prob-
ably be the case in most practical situations, 
there may be special cases in which the rota-
tional uniqueness does not hold.
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Table B10.1. Sources 
and source contributions 
obtained during a receptor 
model intercomparison 
(Viana et al., 2008).

B10.  FACTOR ANALYSIS II: EVALUATION OF SOURCE 
CONTRIBUTION ESTIMATION AND MODEL 
PERFORMANCE INDICATORS 

Principal Component Analysis – Multilinear 
Regression 

Different techniques exist to carry out source 
contribution estimations by performing multi-lin-
ear regression of the principal components ver-
sus the total PM mass: APCS (Absolute Principal 
Component Scores; Thurston and Spengler, 
1985), APCA (Absolute Principal Component 
Analysis; e.g. Swietlicki and Krejci, 1996), and 
PCA-MLR (Principal Component Analysis – 
Multilinear Regression; e.g. Tauler et al., 2008).

In the following, these techniques are referred 
to as APCA.

This analysis may be carried out using numer-
ous statistical software packages, many of them 
freely available. The computation of source 
contributions with APCA is characterised by:

• no specific software required

• fast source identification 

• relatively time-consuming source contribu-
tion estimation.

However, this analysis suffers from three strong 
limitations:

1.  Given that non-negativity constraints are not 
included in APCA, negative regression coeffi-
cients may be obtained. As a result, the out-
put could show negative source contributions 
(in terms of mass). Two different approaches 
are generally used to solve this issue: includ-
ing the resulting negative mass concentra-
tions in the final result of APCA, even though 
this has no physical meaning, or eliminating 
the negative values by replacing them with 
zero or an empty cell. Evidently, the results 
obtained after the application of one or the 
other approach may vary largely. Thus, in the 
absence of consensus regarding the issue of 
negative regression coefficients, APCA solu-
tions may be prone to high subjectivity and 
lack of comparability.

APCA PMF CMB
Sources  % PM10 Sources  % PM10 Sources  % PM10

Individual sources

Clay
Industrial#1
Industrial#2

31
15
 2

Clay
Industrial

16
16

Clay
Industrial#1
Industrial#2

41
 4
 2

Vehicular 10 Vehicular 10 Vehicular 13

Regional+marine 34 Regional+marine
Regional SO4

2-

23
25

Regional
Marine
Soil

18
 3
12

Undetermined  8 Undetermined 10 Undetermined  7

Grouped sources

Mining&Industry
Vehicular
Regional

48
10
34

Mining&Industry
Vehicular
Regional

32
10
48

Mining&Industry
Vehicular
Regional

47
13
33

Source contributions are divided into the sources obtained directly by the receptor models, and grouped into 
three main source categories to facilitate the intercomparison of results.
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Table B10.2. Number 
of solutions obtained 

during a receptor model 
intercomparison (Viana et 

al., 2008), and average 
absolute errors (AAEs) 

for each of the solutions 
computed using APCA, PMF 

and CMB.

2.  The number of sources resolved by APCA is 
generally lower than that obtained with other 
models (e.g. PMF or CMB), and quantification 
of source contributions may not be as pre-
cise (Table B10.1).

3.  APCA has lower flexibility with respect to PMF 
and CMB, with fewer valid solutions being 
produced (Table B10.2).

Several model performance indicators are 
available when applying APCA. These are rela-
tively simple to use in order to assess:

a.   Correlation between modelled and meas-
ured PM mass.

b.   Chemical mass closure: sum of the esti-
mated source contributions, and comparison 
with total measured PM mass.

c.   Average absolute error (AAE): the aver-
age of the absolute percentage differences 
between the estimated and experimental 
PM mass data, when different numbers of 
sources or factors are considered (Chow et 
al., 2007, Table B10.2).

d.   Correlation between modelled and measured 
known sources: the most commonly used 
source for this test is the marine source, 
calculated as the sum of the chemically 
determined Na and Cl in study areas with no 
other major sources of these elements.

In addition, model performance may also be 
tested by:

• Understanding the data and the solution: 
Does it make sense? Is it reasonable?

• Combination with other tools (e.g. back-tra-
jectory analysis)

• Combination with other models (PMF to 
refine the quantification of source contri-
butions and potentially obtain uncertainty 
estimates)

• Correlation with EU guideline methods 
(SEC(2011) 208) for natural aerosol sources 
(e.g. African dust, sea-spray).

In conclusion:

a.  APCA is an exploratory receptor modelling 
tool for urban air quality management, i.e. 
for the design of air pollution mitigation 
strategies, because of:
i.  Fast source identification

ii.  The size of datasets required could poten-
tially be available from air quality moni-
toring networks, from at least one selected 
station/network

iii.  Easy to interpret model performance indi-
cators, e.g. average absolute errors (AAE)

iv.  However, the quantification of source con-
tributions is rather inaccurate, and source 
contributions (in terms of mass) are sub-
ject to uncertainty due to the absence of 
the non-negativity constraint.

b.  In scientific applications, APCA should mainly 
be used to obtain a preliminary picture of the 
possible contribution sources, as a prepara-
tory step for the use of more advanced mod-
els (PMF, CMB, etc.).

PMF (Positive Matrix Factorization)

In PMF, Q values indicate how well the model 
fits the input data. Q(robust) is calculated by 
excluding outliers while Q(true) is calculated 
including all data points. The expected (theoret-
ical) Q is nm – p(n+m), where n is the number 
of species, m is the number of samples in the 
dataset, and p is the number of factors fitted 
by the model (see the EPA PMF v3 User Guide, 
Norris et al., 2008).

An alternative estimation distinguishes weak 
from good species as follows (Brown and 
Hafner, 2005): 

Q = (# samples * # good species) + [(# samples 
* # weak species)/3] – (# samples * # factors 
being estimated)

APCA PMF CMB

Number of factors AAE ( %) AAEmax ( %) AAE ( %) AAEmax ( %) AAE ( %) AAEmax ( %)

3 18 77 19 89 67 85

4 NS NS 17 81 13 34

5 14 69 16 73 11 34

6 NS NS 19 69 11-36* 25-68*

7 NS NS 16 69 11 20

8 NS NS 15 68 NS NS

* range depending on which source profiles are excluded.



57

European Guide on Air Pollution Source Apportionment with Receptor Models

In addition, a number of diagnostic tests are 
embedded in the EPA PMF v3 software to evalu-
ate the runs: residual analysis, observed vs pre-
dicted scatter plot and time series, combined 
plots of profiles and contributions and box plots 
to summarise the distribution of the contribu-
tions, G-space plots (or G-plots) and factor pie 
charts. All of these plots are described in the 
EPA PMF v3 User Guide (Norris et al., 2008).

A number of elements can contribute to the 
uncertainty in the solutions modelled by PMF, 
including temporal variation of particulate mat-
ter (PM) source profiles, measurement error, 
sampling variability, and intrinsic limitations in 
the modelling process, such as rotational ambi-
guity and incorrectly specified number of fac-
tors (see section B9).

In PMF2, it is possible to estimate uncertainties 
in the F and G matrices (eq. 9.1) using the pro-
cess originally described by Roscoe and Hopke 
(1981) and described in detail by Malinowski 
(1991). The errors in the elements of one 
matrix are estimated based on the errors in the 
ambient concentration values, assuming that 
the other matrix is error-free. Each matrix (F or 
G) is treated similarly in such a way that an 
uncertainty value is associated with each ele-
ment of the matrix.

The standard deviation of the source contribu-
tion estimates (SCE) of every factor in all the 
samples can be used as an estimation of the 
uncertainty of the average SCEs.

Bootstrapping (available in EPA PMF v3) can 
be used to determine the precision of PMF 
profiles by calculating the standard deviation 
(assuming normality) or various percentiles of 
factor profiles (F-matrix values) from numer-
ous bootstrap runs. Nevertheless, to obtain a 
better representation of the component of 
uncertainty associated with rotational ambi-
guity, an improved error estimation scheme 
has been proposed by Paatero et al. (2013) 
and will be available in the new release of the 
EPA-PMF(version 5). The new scheme combines 
bootstrapping and a “displacement” technique 
based on the controlled perturbation of factor 
elements.
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B11.  FACTOR ANALYSIS III: CRITERIA FOR FACTOR 
ASSIGNMENT

The most subjective and least quantifiable 
step in applying PMF for source apportionment 
is the assignment of identities to the factors 
chosen as the final solution. It is important for 
the data analyst to know what types of sources 
are present in the study area. However, even 
in cases where there are good emission inven-
tories, there can be situations where a source 
cannot be identified (Hwang and Hopke, 2006). 
In addition, atmospheric processes may result 
in multiple factors such as summer and winter 
secondary sulphate, or in producing sufficiently 
collinear sources that an irresolvable mixture of 
source profiles is obtained. Thus, profiles have 
to be interpreted with both knowledge of the 
study area and a background in atmospheric 
science. For that reason, any choice concerning 
the correspondence between source categories 
and factors must be supported by objective and 
quantitative tests.

High shares of a source marker in a factor pro-
file may be used for a preliminary source attri-
bution. However, further evidence is required 
for confirmation of this initial hypothesis. 

Proposed steps to support factor assignment:

• Compare the obtained factor profiles with 
those reported in previously published PMF 
studies (the comparison can be performed 
either visually or numerically using, for 
instance, the Pearson coefficient);

• Search the literature for measured PM 
source profiles with characteristics similar to 
the factor profiles in the F-matrix;

• Search for measured PM source profiles in 
relevant databases (e.g. SPECIATE);

• Identify the source by comparing certain spe-
cies ratios (also referred to as “enrichment 
factors”) in PMF source/factor profiles to the 
same ratios in measured PM source profiles 
(see also section B12);

• Perform local and/or regional source sam-
pling along with the ambient PM sampling 
to develop source profiles needed to identify 
PMF profiles;

• Look at temporal patterns for “expected” 
behaviours (e.g. the largest contributions 
of a source believed to be residential wood 
burning should likely occur during winter 
months); plots of contributions over time can 
be inspected in order to look for daily, weekly, 
seasonal, and yearly oscillations of source 
contributions. Mean source contributions by 
season and by day of the week (weekend 
versus weekday) should also be examined 
(see also section B12).

It should be noted that when source profiles are 
not independent (i.e. there is severe collinearity) 
it is difficult to separate their contributions. In 
this case, additional chemical/physical informa-
tion is needed to improve source segregation. 
Nevertheless, sources can clearly be separated 
for a sufficiently low level of collinearity and 
precision in the input data. In spectrochemical 
problems, good factors can be obtained despite 
quite severe collinearity.  However, the collin-
earity inflates the uncertainties of the values 
(Cheng et al., 1988). 

Advanced User Box

Auxiliary analyses can be used to aid in the 
identification of PMF factors: e.g. contribu-
tion of wind roses, conditional probabil-
ity function, potential source contribution 
function, cluster analysis, and residence 
time analysis are some techniques for ana-
lysing wind or backward trajectories (see 
section C1).
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B12. TESTS FOR MODEL PERFORMANCE VALIDATION 

The fundamental, natural physical constraints 
that must be fulfilled in any source apportion-
ment study are as follows (Hopke, 2010):

• The original data must be reproduced by 
the model; the model must explain the 
observations;

• The predicted source compositions must be 
non-negative; a source cannot have a nega-
tive elemental concentration (slightly nega-
tive values are acceptable provided zero is in 
the confidence interval);

• The predicted source contributions to the 
aerosol must all be non-negative; a source 
cannot emit negative mass;

• The sum of the predicted elemental mass 
contributions for each source must be less 
than or equal to the total measured mass for 
each element; the whole is greater than or 
equal to the sum of its parts.

The assignment of a source factor to a source 
type (or source category) is a critical step in fac-
tor analysis. Therefore, it is important to carry 
out sensitivity tests that assess the variability 
of the results because of different combinations 
of sources and/or species in the model (Watson 
et al., 2008). Several diagnostics are available 
to evaluate the receptor model results.

Advanced User Box

Actually, ME 2 allows a certain degree of 
negativity in the source/factor contributions 
for the sake of better rotational uniqueness 
(Norris et al., 2009).

Ratios

Unique source tracers are rare, therefore ele-
mental and/or molecular ratios have often been 
used to trace similar sources, such as combus-
tion processes or mineral sources, for exam-
ple. In factor analysis techniques, the resolved 

factor profiles are often evaluated by comparing 
relative amounts of elements/compounds with 
those expected in relevant sources (Galarneau, 
2008). Robinson et al. (2006a, b and c) dem-
onstrated that the ratio of marker species in a 
source profile, when compared with those from 
the same and/or different source types and 
from ambient samples, helps to interpret the 
source variability and identify the most impor-
tant sources in a region. However, one should 
bear in mind that the two assumptions of 
unique ratios among sources and conservative 
ratios in the atmosphere are not always met in 
reality. Also, the species examined should have 
similar reactivities with respect to atmospheric 
oxidants and solar radiation and similar particle 
size distributions in order to exclude differences 
in particle scavenging by precipitation or parti-
cle dry deposition (Galarneau, 2008). 

One of the first uses of the elemental ratio was 
proposed by Juntto and Paatero (1994) who 
compared the Na/Cl ratio in PMF factors with 
sea-water composition. Liu et al. (2003) showed 
that their long-range transported dust profiles 
correlated well with standard reference Chinese 
desert dust, with the exception of enrichment in 
sulphate. Hien et al. (2004) used several ratios 
to distinguish between Local Burning and Long-
Range transport aerosols. Hien et al. (2005) 
used different Ca/Si ratios to separate coal fly 
ash from soil dust. Lanz et al. (2007) calculated 
ratios of the modelled primary organic aerosols 
(POA) and measured primary pollutants such 
as elemental carbon (EC), nitrogen oxides (NOx), 
and carbon monoxide (CO), finding good agree-
ment with literature values. Organic and inor-
ganic ratio evolutions have been also examined 
as a function of photochemical age of aerosols 
(DeCarlo et al., 2010).

Residuals

The distribution of residuals (the percentage 
of all scaled residuals in a given bin, 0.5 for 
example) should be investigated in order to 
verify how well the model fits each species. 
If a species has many large-scaled residuals 
or displays a non-normal curve, it may be an 
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indication of a poor fit. A well-modelled species 
instead shows normally distributed residuals 
within the range +3 and -3. 

In weighted ‘least squares’ analysis, the distri-
bution of residuals can vary substantially with 
the different values of the variables (species). 
Therefore, weighted residuals (Graybill and 
Iyer, 1994) must be used in graphical residual 
analysis, so that the plots can be interpreted as 
usual. This must be taken into account when 
evaluating EPA PMF v3 default unweighted 
residual graphs. 

The scale of the histogram chart (y-axis) is 
important.  Setting the maximum values as the 
maximum value of each species is helpful when 
examining individual species and the shape of 
their distributions. If the Y-axis maximum is 
fixed at 100 %, a comparison between spe-
cies can easily be made. Species with residuals 
beyond +3 and -3 need to be further evaluated 
by comparing the observed vs modelled con-
centrations by means of scatter plots and/or 
time series. Large positive scaled residuals may 
indicate that the model is not fitting the species 
or that the species is present in an infrequent 
source. Species that do not have a strong corre-
lation between observed and modelled values 
or have poorly modelled peak values should 
be evaluated by the user to determine if they 
should be downweighted or excluded from the 
model. 

Other useful statistics when comparing 
observed vs modelled values are the coefficient 
of determination (r2), intercept, slope, and nor-
mal residual (EPA PMF v3 User Guide; Norris et 
al., 2008). 

Advanced User Box

Residuals can also be compared between 
different runs of one model (different start-
ing points). The sum of squared difference 
between residuals of a pair of runs can be 
used (as in EPA PMF v3) as a diagnostic of 
different solutions (rather than mere rota-
tions of the same solution). 

In EPA PMF v5.0, it is possible to examine 
the ratio of observed to expected Q-values 
using Q/Qexp charts. This is an efficient way 
to understand the residuals of the PMF 
solution, and in particular, what samples 
and/or species were not well modelled (i.e. 
have values greater than 2).

The Kolmogorov-Smirnoff test can be used to 
determine whether the residuals are normally 
distributed. If the test indicates that the residu-
als are not normally distributed, the user should 
visually inspect the histogram for outlying 
residuals. A very narrow (leptokurtic) distribu-
tion of residuals suggests that species are fit-
ted too well and may be an indicator of “ghost 
factors”, which can explain most of the varia-
tion of one species (Amato and Hopke, 2012).

Time trends

Source strengths are often time-dependent 
due to the influence of atmospheric processes 
(nucleation, volatilisation, transport, etc.), mete-
orological parameters (solar radiation, humid-
ity, precipitation, etc.), and variation in human 
activity (intra-day, day-to-day). As a result, the 
source contributions will also change over time, 
and this variation is a suitable diagnostic for 
evaluating interpretations of factor profiles.

Some programs such as EPA PMF v3 already 
implement tools for a quick check of the sea-
sonal and weekday/weekend variation of fac-
tor contributions. However, the user can further 
explore their time variability in relation to con-
centrations of gaseous pollutants such as SO2, 
CO and NOx for combustion sources (Zhou et 
al., 2005; Yue et al., 2008; Brown et al., 2012), 
Ox (O3+NO2) for secondary sources (Huang et 
al., 2010), and NH3 for agricultural activities 
(Eatough et al., 2010). In some cases, factor 
analysis can couple different pollutant cat-
egories in a unique dataset; for example, Pey 
et al. (2009) combined the size distribution of 
aerosols, meteorological parameters, gaseous 
pollutants and chemical speciation of PM2.5 to 
carry out a PCA analysis.

A posteriori wind direction analysis 

A simple but reliable method is to plot source 
contributions in a polar scatter plot in such a 
way that wind direction determines the angle 
and source contribution determines the radius 
of each plotted point. Such a plot shows at a 
glance the general behaviour of wind-direc-
tional dependence. Also, an overview of the 
individual points is helpful, as one or two high-
concentration points cannot distort the picture, 
as discussed above. Additional information, 
such as winter/summer classification, may be 
indicated by using different colours when plot-
ting winter and summer source contribution 
points. See section C1 for a more detailed dis-
cussion of wind direction analysis techniques.
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Overall uncertainty

The output from source apportionment (SA) 
consists of source contribution estimates (SCEs) 
with a definite uncertainty. Special efforts must 
be taken by the SA scientist to analyse and 
communicate this uncertainty. Most receptor 
models compute the uncertainty of the output. 
However, in cases where results derive from 
more than one SA technique, the computa-
tion of the uncertainty of the combined SCEs is 
not straightforward. Larsen et al. (2012) have 
recently demonstrated how probabilistic uncer-
tainty characterisation by Monte Carlo simula-
tions yielding probability distributions can be 
used to combine results deriving from CMB, 
PMF, and emission factor analysis. The advan-
tage of this approach is that it generates the 
uncertainty of the combined SCEs as well as 
essential data for sensitivity analysis.

Advanced User Box

RMs output uncertainty derives from both 
inaccuracy in the input data and model 
assumptions and ambiguities (Karagulian 
and Belis, 2012). Monte-Carlo probabilistic 
methods (such as bootstrapping) are suit-
able for estimating the random component 
of the output uncertainty in factor analyti-
cal methods. On the other hand, according 
to a study on the error estimation methods 
implemented in EPA PMF v.5 (Paatero et al., 
2013), analysis of controlled perturbations 
of the F and G matrices elements (displace-
ments) is most appropriate for estimating 
the rotational uncertainty (which is a non-
random component). 

If the number of factors is large, as is typi-
cal when analysing speciated data, rota-
tional uncertainty is often the leading cause 
of uncertainty in results, and relying on 
Monte-Carlo methods may produce error 
intervals that are much too narrow. On the 
other hand, if there is only a small number 
of rotation-limiting zero values in true time 
series (G) factors, customary bootstrapping 
may also lead to uncertainties that are 
much too large. Whenever the resampling 
process happens to eliminate such zero 
values, rotational uncertainty may increase 
dramatically, and bootstrapped results 
may deviate dramatically from the original 
full-data results.

The new methodology is promising espe-
cially when used in combination with Monte 
Carlo tests. Nevertheless, more experience 
is needed on its application to real-world 
datasets.
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B13. REPORTING RESULTS AND METHODOLOGY 

Due to the large number of variables to be 
considered, source apportionment (SA) studies 
are complex. They often require adaptation of 
existing methods to the specific problem or the 
development of tailor-made solutions. In addi-
tion, there are many steps in which decisions 
have to be taken by the modeller. Therefore, it 
is essential to support the final results with an 
appropriate description of the methodological 
choices and documentation of the objective 
qualitative or quantitative information that 
support expert decisions. In this way, reviewers 
and final users are provided with the elements 
to assess the relevance of the study and other 
modellers get a chance to reproduce the meth-
odology. If the results are reported in a peer-
reviewed scientific journal, much detail can be 
provided as supplementary material that most 
journals now support. 

The present protocol has been conceived as a 
reference document that cannot substitute for 
experience and competence. For that reason, 
documented participation of experts in train-
ing and intercomparisons should be promoted 
in order to develop and demonstrate individual 
and institutional capacities.

Although this protocol aims at promoting the 
highest quality standards, it has to deal with 
the intrinsic limitation of any SA study: the 
“true” contribution of sources to atmospheric 
pollution at a given point cannot be directly 
measured.

SA studies can be considered as being consist-
ent with the present protocol if they comply 
with the following requisites:

• The results are described according to the 
steps proposed in sections B1- B12. When 
limited space is available, these technical 
notes should be allocated in an annex or, in 
the case of scientific journals, as supporting 
information or supplementary material.

• Expert decisions are described and evidence 
of the objective information (e.g. quantitative 
tests, sensitivity analysis, external informa-
tion) that supports them is provided. This 
point is essential for critical steps such as the 
selection of source profiles in chemical mass 
balance modelling, and the identification of 
the number of sources and factor assign-
ment in factor analysis.

• The documentation includes the references 
of the source profiles used as input or to vali-
date factor assignment.

• The model and version used are clearly 
reported and the modifications adopted for 
the specific case well described. 

• The quantitative uncertainty of the output is 
estimated and reported using the techniques 
described in the present document or other 
robust methodologies available in the litera-
ture. Sources of uncertainty that cannot be 
quantified should be acknowledged, bear-
ing in mind that both inaccuracy in the input 
data and model assumptions and ambigui-
ties contribute to the total uncertainty budg-
et in receptor models. 

• Estimation of overall uncertainty and valida-
tion is achieved by comparing outputs from 
independent models on the same dataset 
and/or using permutation or displacement 
techniques.

• Sensitivity analysis is performed to demon-
strate that there are no substantial deviations 
from the mass conservation assumption.

• Only solutions that implement the quality 
assurance steps described in this guide can 
claim state-of-the-art performance sup-
ported by community-wide intercomparison 
exercises.
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Table C1.1. Hybrid 
trajectory-based receptor 
models (based on Belis et 
al., 2013)

PART C: ADVANCED MODELS

C1.  WIND AND TRAJECTORY ANALYSIS IN SOURCE 
APPORTIONMENT 

Introduction

Source apportionment results are frequently 
complemented by procedures to identify the 
direction of air masses with high pollution lev-
els or where certain compounds of interest 
come from (table C1.1). For low- to medium-
spatial scales this can be done by, for example, 
wind rose analysis (see section B12). However, 
medium and long-range transport may be better 
assessed using backward trajectories calculated 
with a suitable dispersion model (Stohl, 1998). 

Wind Direction Analysis

The potential location of emission sources or the 
origin of polluted air masses can be investigated a 
posteriori, once the source contributions are already 
obtained. As a starting point, simple concentration 
roses (polar plots of sector-averaged wind contri-
butions) can be used. The conditional probability 
function (CPF; Ashbaugh et al., 1985) is a common 
tool used to analyse point source impacts from 
varying wind directions using the source contribu-
tion estimates from receptor models coupled with 
the wind direction values measured on site (Kim 
et al., 2003). When particulate matter (PM) meas-
urements are performed over 24 hours, the same 
daily source contribution is assigned to each hour 
of a given day in order to match to the hourly wind 
data. The conditional probability function (CPF) 
estimates the probability that a given source con-
tribution from a given wind direction will exceed a 
predetermined threshold criterion. It is defined as:

  (B12.1)

where mΔθ is the number of occurrences from 
wind sector Δθ that exceeded the threshold cri-
terion, and nΔθ is the total amount of data from 
the same wind sector. Typically, 12 sectors are 
used (Δθ = 15 degrees) and calm wind periods 
are excluded due to the isotropic behaviour of 
wind vane under calm winds. The threshold crite-
rion should be chosen based on sensitivity tests 

with several different percentiles of the fractional 
contribution from each source. A commonly used 
threshold is the 75th percentile (e. g. Amato and 
Hopke, 2012; Jeong et al., 2011; Kim et al., 2004).

The sources are likely to be located based on 
the wind directions that have high conditional 
probability values. A large number of papers 
have been published on the application of these 
approaches to the receptor modelling prob-
lem (Zhao and Hopke, 2006; Kim and Hopke, 
2004, among others).  However, Zhou et al. 
(2004) showed that the conditional probability 
function can provide misleading results when 
many directions are used with very few (or no) 
wind occurrences and when the distribution of 
concentrations is far from normal. The non-
parametric regression analysis technique is an 
alternative that can be used to locate sources. 
In this technique, the relationship of the contri-
bution and wind direction is determined by ker-
nel regression and confidence intervals are also 
given (Henry et al., 2002; Henry, 2002). The 
expected concentration C at θ is computed by:

  (B12.2)

ANALYSIS OF WIND DIRECTION

Conditional probability function (CPF)

Non-parametric wind regression (NWR)

Pseudo deterministic receptor model (PDRM)

ANALYSIS OF BACKWARD TRAJECTORIES

Trajectory sector analysis (TSA)

Potential source contribution function (PSCF)

Simplified quantitative transport bias analysis 
(SQTBA)

Trajectory mass balance  (TRMB) or TRMB regres-
sion (TMBR)
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Figure C1.1. 96-hour back 
trajectory calculated with 

HYSPLIT 4.9 for a day 
with high mineral dust 

concentration (left; Draxler, 
2012), pointing to arid 
source regions close to 
the Caspian Sea (right; 

Abasova, 2010)

where K is a Gaussian kernel function, Wi and Ci 

are the wind direction and concentration of the 
ith sample respectively, and Δθ is the smooth-
ing parameter, the only adjustable parameter 
in nonparametric regression (Zhou et al., 2004).  
Kim and Hopke (2004) showed that conditional 
probability function and nonparametric regres-
sion provided very similar results for many 
cases. 

Backward Trajectory Analysis

In a source apportionment study, back trajec-
tories can be used either to pre-select datasets 
for analysis (e.g. in cases where specific sources 
and source regions are of major interest) or, as 
is most frequently the case, to check the plausi-
bility of identified sources/processes and to get 
information about their geographical distribu-
tion and locations.

In addition to the models operated commer-
cially by national weather forecast organisa-
tions, there is a variety of research-oriented 
models available in Europe which allow back-
trajectory plots to be produced, e.g. FLEXPART 
(NILU); REM-CALGRID (TRUMF), EURAD (RIU). 
However, such trajectories can be obtained 
only through the research groups or companies 
operating these models and usually have to be 
paid for. Therefore, the most widely used tool is 
the NOAA HYSPLIT model (NOAA Atmospheric 
Research Laboratory; Draxler, 2012) which 
is available free of charge to the scientific 
community. Trajectories can be calculated on 
demand via a web application (Rolph, 2012) 

or locally after downloading the program pack-
age. While the first approach allows for rapid 
feedback, limitations have been imposed to 
reduce computational activities on the NOAA 
Atmospheric Research Laboratory servers. 
Hence, local installation is recommended for 
routine use.

The HYSPLIT model can process different mete-
orological file types that may also be download-
ed via the program. Global data assimilation 
system files are the standard meteorological 
files that can be used in Europe, and have a 
spatial resolution of 1 degree longitude and lat-
itude. More detailed information can be found 
on the NOAA Atmospheric Research Laboratory 
website.

In a basic approach, several trajectories are 
calculated for each day, varying the time of 
arrival and height above ground level for back-
ward trajectory periods of usually 3 or 4 days. 

To get a more temporally representative picture 
of the regions associated with, for example, epi-
sodes with high PM levels, computation of tra-
jectory data is needed for longer periods (up to 
several years) and multiple sites. The trajectory 
cloud obtained can be further processed using 
statistical methods such as clustering (Stohl et 
al., 2002) to identify the most relevant types of 
air mass transport to the sites or areas under 
consideration. Such multiple-trajectory pro-
cessing also reduces the uncertainties of single 
trajectory processing, which increase consider-
ably with greater distances. 
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Figure C1.2. PMF source 
profile denoted as “Aged 
marine aerosol” and 
corresponding potential 
source contribution 
function plot for factor 
contributions > 75 
percentile (Beuck et al., 
2011)

The most common procedures use six-hour 
increments in arrival times to cover a 24-hour 
period. However, detailed time resolutions such 
as one-hour increments are also possible (note: 
the basic meteorological models are run on a 
three-hour time resolution). Single-day calcula-
tions have proven to be particularly useful in 
the case of short-term dust events caused, for 
example, by long-range dust intrusions from 
arid regions or wildfires. An example is given 
in figure C1.1, which shows straight air mass 
advection from Eastern Europe which carried 

mineral dust probably from arid regions close 
to the Caspian Sea (Beuck et al., 2011, Abasova, 
2010).

Moreover, advanced evaluation methods 
exist to apportion PM levels measured at the 
receptor site to the trajectory segments using 
analysis of backward trajectories (Table C1.1). 
An example of an analysis of the potential 
source contribution function (PSCF) is shown in 
Figure C1.2.

PSCF plot computed with TrajStat software (Wang et al., 2009)



70

European Guide on Air Pollution Source Apportionment with Receptor Models

References:

Abbasova T., 2010. Detection and analysis of 
changes in desertification in the Caspian Sea 
Region. Master Thesis. Stockholm University, 
Faculty of Science, Department of Physical 
Geography and Quaternary Geology (INK), 
Stockholm University. http://su.diva-portal.
org/smash/record.jsf?searchId=1&pid=di
va2:354905; access 10.01.2012

Amato, F., Hopke, P. K., 2012. Source apportion-
ment of the ambient PM2.5 across St. Louis 
using constrained positive matrix factorization, 
Atmospheric Environment, 46(0), 329–337, 
doi:10.1016/j.atmosenv.2011.09.062.

ARL: Air Resouces Laboratory, http://www.arl.
noaa.gov/ 

Ashbaugh, L. L., Malm, W. C., Sadeh, W. Z., 1985. 
A Residence Time Probability Analysis of Sulfur 
Concentrations at Grand Canyon National Park. 
Atmospheric Environment - Part A General 
Topics 19 (8),1263-1270.

Belis C.A., Karagulian, F., Larsen, B.R., Hopke. 
P. K., 2013. Critical review and meta-analysis 
of ambient particulate matter source appor-
tionment using receptor models in Europe. 
Atmospheric Environment 69, 94-108.

Beuck, H., Quass, U., Klemm, O., Kuhlbusch, T.A.J., 
2011. Assessment of sea salt and mineral dust 
contributions to PM10 in NW Germany using 
tracer models and positive matrix factorization. 
Atmospheric Environment 45, 5813-5821

Draxler, R.R. and Rolph, G.D., 2012. HYSPLIT 
(HYbrid Single-Particle Lagrangian Integrated 
Trajectory) Model access via NOAA ARL READY 
Website (http://ready.arl.noaa.gov/HYSPLIT.php). 
NOAA Air Resources Laboratory, Silver Spring, MD. 

Henry, R.C., 2002. Multivariate receptor mod-
els—current practice and future trends. 
Chemometrics and Intelligent Laboratory 
Systems 60, 43–48.

Henry, R.C., Changa, Y-S., Spiegelman, C.H., 
2002. Locating nearby sources of air pollution 
by nonparametric regression of atmospheric 
concentrations on wind direction. Atmospheric 
Environment 36, 2237–2244.NILU: http://trans-
port.nilu.no/flexpart

Jeong, C. H., McGuire, M. L., Herod, D., Dann, 
T., Dabek-Zlotorzynska, E., Wang, D., Ding, L., 
Celo, V., Mathieu, D., Evans, G., 2011. Receptor 
model based identification of PM2.5 sourc-
es in Canadian cities, Atmospheric Pollution 
Research, 2(2), 158–171. 

Kim, E., Hopke, P. K., Larson, T. V., Covert, D. S., 
2004. Analysis of ambient particle size distri-
butions using unmix and positive matrix fac-
torization, Environmental science & technology, 
38(1), 202–209. 

Kim, E. and Hopke, P.K., 2004. Comparison 
between conditional probability function and 
nonparametric regression for fine particle 
source directions. Atmospheric Environment 38 
(28), 4667-4673

Kim, E., Hopke, P.K., Paatero, P., Edgeton, E.S., 
2003. Incorporation of Parametric Factors 
into Multilinear Receptor Models Studies of 
Atlanta Aerosol. Atmospheric Environment 37, 
5009-5021

RIU: the EURopean Air Pollution Dispersion 
(EURAD) Project: http://www.eurad.uni-koeln.de/
index_e.html?/modell/eurad_descr_e.html 

Rolph, G.D., 2012. Real-time Environmental 
Applications and Display sYstem (READY) 
Website (http://ready.arl.noaa.gov). NOAA Air 
Resources Laboratory, Silver Spring, MD.

Stohl A., 1998. Computation accuracy and appli-
cations of trajectories - A review and bibliogra-
phy. Atmospheric Environment 32, 947-966.

Stohl A., Eckhardt S., Forster C., James P., 
Spichtinger N., Seibert P., 2002. A replacement for 
simple back trajectory calculations in the interpre-
tation of atmospheric trace substance measure-
ments. Atmospheric Environment 36, 4635-4648.

TRUMF (Troposphärische UmweltForschung): 
TRAMPER Trajectories: http://www.geo.fu-berlin.
de/en/met/ag/trumf/Trajektorien/index.html

Wang Y.Q., Zhang X. Y., Draxler R.R., 2009. TrajStat: 
GIS-based software that uses various trajectory 
statistical analysis methods to identify potential 
sources from long-term air pollution measure-
ment data. Environmental Modelling & Software 
24, 938.  download of product from http://www.
meteothinker.com/TrajStatProduct.html

Zhao, W., Hopke, P.K., 2006. Source investigation 
for ambient PM 2.5 in Indianapolis, IN. Aerosol 
Science and Technology 40 (10), 898-909.

Zeng Y., Hopke P. K., 1989. A Study of the 
Sources of Acid Precipitation in Ontario, Canada. 
Atmospheric Environment 23, 1499-1509.

Zhou, L., Hopke, P.K., Paatero, P., Ondov, J.M., 
Pancras, J.P., Pekney, N.J., Davidson C.I., 2004. 
Advanced factor analysis for multiple time res-
olution aerosol composition data. Atmospheric 
Environment 38 (29), 4909-4920.

http://su.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:354905
http://su.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:354905
http://su.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:354905
10.1016/j.atmosenv
http://www.arl.noaa.gov
http://www.arl.noaa.gov
http://ready.arl.noaa.gov/HYSPLIT.php
2244.NILU
http://transport.nilu.no/flexpart
http://transport.nilu.no/flexpart
http://www.eurad.uni-koeln.de/index_e.html
http://www.eurad.uni-koeln.de/index_e.html
eurad_descr_e.html
http://ready.arl.noaa.gov
http://www.geo.fu-berlin.de/en/met/ag/trumf/Trajektorien/index.html
http://www.geo.fu-berlin.de/en/met/ag/trumf/Trajektorien/index.html
http://www.meteothinker.com/TrajStatProduct.html
http://www.meteothinker.com/TrajStatProduct.html


71

European Guide on Air Pollution Source Apportionment with Receptor Models

Figure C2.1. Schematic 
description of the AMS 
source: http://cires.
colorado.edu/~jjose/ams.
html#Aerodyne-AMS

C2.  THE USE OF PMF and ME-2 IN AEROSOL 
MASS SPECTROMETER DATA PROCESSING 

The aerosol mass spectrometer (AMS), 
developed by Aerodyne Research Inc. (ARI), 
Massachusetts, has been designed to provide 
real-time quantitative information on size-
resolved mass concentrations for volatile and 
semi-volatile components present in/on ambi-
ent aerosol particles (Jayne et al., 2000). The 
AMS is designed to provide quantitative com-
position information on ensembles of particles, 
with limited single particle information. The 
instrument combines standard vacuum and 
mass spectrometric techniques with recently 
developed aerosol sampling techniques. A 
schematic representation of the AMS is shown 
in figure C2.1. 

The AMS consists of three main parts: an aero-
sol inlet, a particle sizing chamber, and a parti-
cle composition detection section. The different 
sections are separated by small apertures and 
differentially pumped. The aerosol inlet sam-
ples a flow of 1.5 cm3 s-1 and focuses particles 
into a narrow beam (~ 1 mm diameter). Size-
dependent particle velocities created by expan-
sion into vacuum are used to determine particle 
size through a particle time-of-flight measure-
ment. Detection is performed by directing the 
particle beam onto a resistively heated rough-
ened surface under high vacuum (~ 10-7 Torr). 

Upon impact, the volatile and semi-volatile 
components in/on the particles flash vaporise. 
The vaporisation source is integrally coupled to 
an electron impact ioniser at the entrance of 
a quadrupole mass spectrometer. The instru-
ment’s electronics are coupled to a computer 
for real-time instrument control and data 
acquisition, analysis, and display. Because 
most molecules undergo extensive fragmenta-
tion, the AMS spectra provide information on 
the bulk organic aerosol with limited molecu-
lar detail. The AMS has revolutionised aerosol 
research concerning atmospheric processes 
involving aerosols, and provides quantitative 
information on organic aerosol sources and 
components at high time resolution without fil-
ter sampling issues and extrapolation of small 
marker concentrations to the bulk (Jimenez et 
al., 2009). More than 500 research papers using 
the technique have been published since 2005. 
In this section, the attention is focused on the 
organic composition of the aerosol. According 
to this fraction it is grouped into hydrocarbon-
like organic aerosol (often mostly from traffic), 
oxygenated organic aerosol (mostly secondary 
organic aerosol), cooking organic aerosol, bio-
mass burning/domestic wood burning aerosol 
and other components (Table C2.1).

Ambient Pressure
Sampling Orifice Aerodynamic Particle

Focusing Lens
Particle Beam
TOF Chopper

Quadrupole Mass Spectrometer

Turbo PumpTurbo Pump Turbo Pump

http://cires.colorado.edu/~jjose/ams.html
http://cires.colorado.edu/~jjose/ams.html
http://cires.colorado.edu/~jjose/ams.html
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The first version of the quadrupole-AMS has 
been available for 10 years (Jayne et al., 
2002), the high-resolution AMS (De Carlo et 
al., 2006) for six years and the ACSM (Aerosol 
chemical speciation monitor) for around two 
years. The use of AMS is established and issues 
such as its composition-dependent collection 
efficiency are now characterised and can be 
taken into account. However, the AMS is very 
labour intensive to run over long time peri-
ods, while the ACSM is specifically designed 
for long-term monitoring (Ng et al., 2011). A 
first dedicated network of ACSM instruments 
in Europe was started in 2012 (http://www.psi.
ch/acsm-stations/acsm-and-emep-stations). 
Some features of the AMS are still evolving, 
also allowing for ionisation techniques other 
than electron impact. The calibration is per-
formed using ammonium nitrate. For organic 
matter, it would be advantageous to define 

certain compounds or develop certified refer-
ence materials (CRMs) to ensure comparability 
of the organic mass spectra between different 
instruments. However, the current retrieved 
factors are already rather robust. 

The AMS records the temporal variations of the 
composition and concentration of the organic 
aerosol in the form of a mass spectral matrix 
denoted “ORG” that usually comprises thou-
sands of ensemble spectra with mass-to-charge 
ratios (m/z) of organic fragments acquired with 
a time resolution of seconds to minutes (Figure 
C2.2). Multivariate factor analysis is applied 
to deconvolute the observed ORG matrix into 
unique factors. Factor analysis of the data 
matrices from quantitative instruments usu-
ally involves solving a mass conservation model 
expressed as a two-dimensional bilinear equa-
tion. In the past, the solution to the equation has 

Table C2.1. Commonly 
reported factors using AMS 

(adapted from Zhang et 
al., 2011)

Figure C2.2 Schematic 
representation of an ORG 
matrix (from Zhang et al., 
2011 adapted from Ulrich 

et al., 2009)

Factor name Description

1. LV-OOA: low volatility oxyge-
nated organic aerosol

Oxygen-to-carbon atomic ratio O/C = 0.63, often correlates with 
sulphate

2. SV-OOA: semi-volatile oxyge-
nated organic aerosol

(O/C = 0.38) it correlates better with ammonium nitrate and chloride 
than with LV-OOA 

3. NOA: nitrogen-enriched orga-
nic aerosol

Higher N/C ratio than other organic aerosol components 

4. COA: cooking-related organic 
aerosol 

Spectral features similar to those of particulate organic aerosol from 
cooking emissions and a distinctive diurnal pattern peaking during 
lunch and dinner times

5.HOA: hydrocarbon-like organic 
aerosol deriving from fossil fuel 
combustion 

Given its low O/C ratio (0.06) and good correlation with primary com-
bustion emission species, for example NOx and elemental carbon

6. BBOA (or WBOA): particulate 
organic aerosol from biomass/
wood burning

Spectral features similar to those from wood burning emissions, often 
with high evening contribution in areas where domestic heating is 
fuelled using wood. High correlation with levoglucosan or BCwb from 
the Aethalometer model
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been found using different methods: the custom 
principal component analysis (CPCA) method 
and multiple component analysis (MCA) (Zhang 
et al., 2005). More recently, Lanz et al. (2007) 
applied PMF for the first time on an AMS dataset 
acquired in Zurich, Switzerland. 

A dedicated PMF tool programmed in the numeri-
cal computing environment IGOR Pro and a recent 
database make it possible to perform the analy-
sis in a more standardised way and to compare 
different mass spectra from different solutions 
from places around the world. The programming 
language Mulitilinear Engine 2 (see section C4) 
was used by Lanz et al. (2008) to perform hybrid 
CMB-PMF analyses. In the study carried out in 
Zurich, hydrocarbon-like organic aerosol (HOA) 
was fixed to a certain degree while additional 
factors were freely obtained as in PMF. A new 

IGOR interface called Source Finder (SoFi) has 
been developed by the Paul Scherrer Institute 
(Canonaco et al., 2013) to run analyses with 
ME-2, anywhere between CMB and PMF, for AMS 
and ACSM data. Solutions for filter-based meas-
urements and other kind of data are under devel-
opment (http://www.psi.ch/acsm-stations/me-2).

The guidelines for selecting the best solutions 
reported in table C2.2, adjusted for AMS spec-
tra, are also useful for traditional source appor-
tionment studies.

The family of mass spectrometric techniques 
for the analysis of aerosols has evolved swiftly 
in the past decade, reaching a degree of spe-
cialisation and diversification that makes it 
suitable either for the study of atmospheric 
processes and for long-term monitoring.

Table C2.2 Steps for 
preparing and choosing 
the best solution from PMF 
analysis of AMS datasets 
(adapted from Zhang et 
al., 2011)

1. Calculate data and error matrices. 

2. Further data and error treatment.

2a. Apply minimum error. 

2b. Remove anomalous spikes, if desired. 

2c. Smooth data, if desired. 

2d. Downweight data with low signal-to-noise ratios.

2e. Downweight repeated information (m/z = 44 and related m/z values). 

3. Run PMF for a range of factors (P) and random starts (seeds). Examine the ratio between the observed 
and expected Q (Q/Qexp) vs P. A steep change in slope indicates the minimum P to be considered.

3a. Examine results from different random starts for each P. Sort results by Q/Qexp values and compare 
the factors in each. 
Are there multiple types of results (representing local minima in the solution space)?
If not, proceed to use SEED 0.
If yes, can any of the result types be excluded because the factors are not physically meaningful? Pro-
ceed, exploring seeds that have results with physically meaningful factors.

3b. Try to determine the optimum number of factors by examining multiple criteria: 
• Look for correlations between factor time series and time series of external tracers.
• Look for correlations between factor time series and time series of individual m/z values or ions. 
• Consider factor diurnal profiles, meteorological data, etc.
• Examine factor mass spectra for tracer ions and fragmentation patterns.
•  Look for signs of “split” factors, considering the correlation of mass spectra and time series of factors in 

the same solution. After identifying factors that may have split, explore solutions with more factors to 
check for new, physically meaningful factors.

3c. Examine solution Q contributions and residuals. 
Do the residuals and Q values summed to form time series or mass spectra show periods or m/z values 
that do not fit well? Is this because the solution needs more factors, because the data do not fit the model 
of constant spectra for a given component, or because of instrumental drift, etc.?
Are the distributions of the scaled residuals (xij/σij) for each m/z approximately Gaussian, centred 
around 0, with a reasonable standard deviation?

4. For the best solution chosen from step 3, run PMF for a range of FPEAKs (Paatero, 2004; Norris, et al., 
2008) such that the range of Q/Qexp values is at least 3 % above the minimum Q/Qexp.

4a. Exclude from further consideration solutions that have unrealistic mass spectra and/or time series. 

4b. Does changing the FPEAK change the solution in a way that would change the interpretation of the 
factors from step 3, or do these solutions just represent rotational ambiguity in the solution?
If the interpretation changes, choose the most representative solution and support this choice. 
If the differences represent rotational ambiguity, choose the solution at FPEAK = 0.

5. Conduct bootstrapping analysis on the final solution from step 4 to estimate uncertainty in the solu-
tions. *

6. Make and examine key diagnostic plots. 

6a. Q/Qexp vs varying P. 

http://www.psi.ch/acsm-stations/me
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Figure C3.1 Graphical 
representation of the 
apportionment of light 
absorption between wood 
burning and traffic sources 
(from Sandradewi et al., 
2008b).

C3. THE AETHALOMETER MODEL 

The Aaethalometer instrument was originally 
developed to quantify light absorption by ele-
mental carbon, which is considered to be the 
predominant light-absorbing aerosol species 
at visible wavelengths (Hansen et al., 1984). 
However, several studies recently pointed out 
that organic carbon significantly absorbs light 
in the ultraviolet wavelengths and less signifi-
cantly going into the visible (e.g. Kirchstetter et 
al., 2004). This fraction, known as brown car-
bon for its light brownish colour, includes tar 
materials from smouldering fires or solid fuel 
combustion, pyrolysis products from biomass 
burning and humic-like substances from soil or 
biogenic emissions (Feng et al., 2013).

Light absorption by aerosols is usually param-
eterised as proportional to λ-α, where λ is the 
light wavelength and α represents the Ångstrom 
absorption exponent. While the spectral 
dependence of elemental carbon light absorp-
tion is low (α ~ 1, Bond and Bergstrom, 2006), 
brown carbon exhibits a much higher Ångstrom 
absorption exponent (up to 7, see e.g. Hoffer et 
al., 2006). Based on these differences in optical 
properties, a growing number of studies recent-
ly used multi-wavelength Aethalometers to 
detect and/or apportion wood burning carbona-
ceous aerosols in ambient air (e.g. Jeong et al., 

2004; Sandradewi et al., 2008a, 2008b; Yang 
et al., 2009; Favez et al., 2009, 2010; Sciare et 
al., 2011). 

Some of the most recent works proposed meth-
odologies where total carbonaceous material 
(CMtotal) could be primarily considered as the 
sum of brown-carbon-containing carbonaceous 
material (i.e. CMwb here), non-brown-carbon-
containing carbonaceous material originating 
from fossil fuel combustion (CMff), and non-
combustion organic aerosol (CMother), as follows:

    (C3.1)

where babs,ff,950nm represents the absorption coef-
ficient of CMff at 950nm, babs,wb,470nm represents 
the absorption coefficient of CMwb at 470 nm, C1 
and C2 relate the light absorption to the particu-
late mass of both sources (Figure C3.1), and C3 
corresponds to the amount of non-combustion 
organic aerosol (assumed here to have a negli-
gible light absorption capacity).

It should be noted that CMff comprises traffic 
emissions as well as carbonaceous aerosols 
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originating from fuel oil and natural gas com-
bustion, but excludes coal-burning organic 
aerosol. Indeed, the latter was shown to signifi-
cantly absorb light at near UV wavelengths (e.g. 
Yang et al., 2009) and may thus interfere with 
babs,wb,470nm. Another limitation of this approach 
might be the presence of mineral dust parti-
cles (notably containing iron oxides), that also 
absorb light at near UV wavelengths (Fialho 
et al., 2006) and should thus be considered 
carefully.

The development of receptor models based 
on multi-wavelength light absorption is still in 
the early stages and is subject to continuous 
improvements and to trials in various use appli-
cations. In particular, different methodologies 
are currently proposed to resolve equation C3.1, 
using for instance universal or site-specific C1 

and C2 constants. On the other hand, it should 
also be kept in mind that these methodologies 
are very sensitive to initial conditions (and espe-
cially to the chosen Ångstrom absorption expo-
nent), which leads to high uncertainties. This is 
the reason why users usually perform (and give 
results of) sensitivity tests with wide ranges 
for these initial conditions (see e.g. Favez et al., 
2010 and Sciare et al., 2011), and suggest that 
the results of these sensitivity tests be consid-
ered as the total uncertainties of the model 
outputs. Finally, it should be mentioned that, 
due to the methodology used by Aethalometers 
(filter-based measurement), absorption coeffi-
cients directly obtained from these instruments 
are affected by various sampling and analytical 
artefacts (mostly referred to as multiple scat-
tering and shadowing effects) which need to 
be carefully corrected prior to any data treat-
ment (Collaud Coen et al., 2010 and references 
therein).

Recently, Wang et al. (2012a and b) included 
DeltaC (the difference in Aethalometer BC meas-
ured at 370 nm and that measured at 880 nm) 
in their PMF analyses of data from Rochester, 
NY. With the typical collection of elements, ions, 
organic carbon and elemental carbon, the addi-
tion of DeltaC provided a clear resolution of 
biomass burning from traffic sources (Wang et 
al., 2012a). In an analysis including molecular 
markers, the DeltaC was observed primarily in 
the biomass burning factor along with levoglu-
cosan (Wang et al., 2012b).

The considerable increase in measurements 
carried out using Aethalometers associated 
with the interest in the potential impacts of 
elemental carbon on climate and on health, 
makes this technique an interesting resource 
for improving the understanding of aerosol 
sources, with particular reference to biomass 
burning. 

Care is however recommended in the interpre-
tation of data from the Aethalometer because 
of the non-specific nature of its measurements 
(Harrison et al., 2013).
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C4.  APPORTIONMENT OF THE PM CARBONACEOUS 
FRACTION: RADIOCARBON AND TRACER ANALYSIS

The carbonaceous fraction is one of the main 
components of particulate matter (PM). The 
study of carbonaceous aerosol is impor-
tant because of its adverse effects on health 
(Highwood & Kinnersley, 2006; Mauderly & 
Chow, 2008), air quality (Putaud et al., 2004; 
Turpin & Huntzicker, 1995; Vecchi et al., 2008; 
among others), visibility (Watson, 2002), cul-
tural heritage (Bonazza et al., 2005), and the 
Earth’s radiation balance (IPCC, 2007).

Total carbon (TC) in atmospheric aerosols con-
sists of two main fractions: elemental (EC) and 
organic (OC) carbon. EC is produced by the 
incomplete combustion of fossil and biomass 
fuels in an oxygen-poor environment (Chow et 
al., 2001). It is the most refractory carbon frac-
tion and the most efficient solar-light absorb-
er. OC is contained in organic matter which is 
composed of thousands of chemical constitu-
ents belonging to many compound classes, for 
which complete characterisation is extremely 
difficult. Carbonatic carbon (CC), that is the car-
bon contained in carbonates, may also be pre-
sent, however its contribution to total carbon 
may be considered negligible in most European 
areas, with few exceptions (Perrone et al., 2011; 
Cuccia et al., 2011; Yubero et al., 2011).

While EC is exclusively produced by direct com-
bustion emissions, OC may derive from pri-
mary sources (primary organic carbon, POC), 
such as fossil-fuel combustion, biomass burn-
ing and bioaerosol emissions, as well as from 
the atmospheric gas-to-particle conversion of 
other pollutants through condensation process-
es (driven by temperature and dilution effects) 
and oxidation processes (secondary organic 
carbon, SOC). Since most of the emitted POC 
is semivolatile and some gas-to-particle pro-
cesses take place shortly after emission, some 
authors consider the distinction between POC 
and SOC to be obsolete. In this document, this 
terminology is used for coherence with the 
reviewed literature and to emphasise the dif-
ference between sources and processes, which 
is relevant for the development of abatement 
measures. The lack of direct chemical analysis 

methods for the determination of either POC or 
SOC led to the development of different indirect 
approaches, of which the most widespread is 
the method based on variations of measured 
OC/EC ratios. In this approach, elemental car-
bon is assumed to be a conservative tracer for 
primary combustion-generated OC emissions, 
and SOC simply appears as an increase in the 
OC/EC ratio relative to that of the primary OC/
EC ratio (Turpin and Huntzicker, 1995).

Large uncertainties still affect emission inven-
tories of carbonaceous particles. Monks et al. 
(2009) reviewed global emission estimates: 
uncertainties up to factors 3.4 and 80 are 
reported for primary and secondary carbona-
ceous particles, respectively. The highest uncer-
tainties still concern natural emissions.

The reactivity, volatility and to some extent the 
hygroscopicity of compounds in the OC frac-
tion, also including main source tracers (such 
as levoglucosan), may compromise the basic 
assumptions for receptor models and strongly 
increase difficulties and uncertainties in source 
apportionment. 

In this context, the use of “inert” tracers, such 
as the 14C/12C isotopic ratio, may be of great 
help. Radiocarbon measurement of TC is a 
good tool for fossil/non-fossil source separation 
(Currie, 2000 and the literature cited therein; 
Hildemann et al., 1994). The main principle may 
be briefly explained as follows. “Modern” carbon 
from biomass contains a constant proportion 
of radioactive 14C, giving a 14C/12C isotopic ratio 
of 1. 14C decays with a radiocarbon half-life 
of 5 730 years, which means that none is left 
in fossil fuels, which are millions of years old. 
Therefore, as the fraction of modern carbon 
(fm) is zero for fossil fuels, and as fm should 
be 1 for modern materials, it is possible to esti-
mate the proportion of fossil and non-fossil 
fuels that led to a particular level of total car-
bon in the atmosphere by looking at the value 
of the 14C/12C isotopic ratio. Actually, nuclear 
tests in the 1950s increased the 14C/12C ratio 
in the atmosphere by up to a factor of 2 in the 
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Table C4.1. Schematic 
representation of the 

carbonaceous fractions 
derived by combining 

radiocarbon measurements 
with organic markers in 
Gelencsér et al. (2007).

early 1960s. Values have been slowly decreas-
ing since then and fm is now approaching 1: 
the trend of the 14C content in the atmosphere 
can be found in Levin et al. (2010). The excess 
of 14C in the atmosphere led to the increase of 
14C/12C ratio in biological material and must be 
taken into account when apportioning modern 
sources.

However, the sole use of radiocarbon measure-
ments on total carbon only allows for a separa-
tion between modern and fossil contributions. 
This simple division is not enough to apportion 
natural and anthropogenic sources since mod-
ern carbon could result from natural emissions 
as well as from wood/biomass burning and oth-
er anthropogenic activities (such as cooking). 
To overcome this limitation, Szidat et al. (2004; 
2006) proposed performing radiocarbon meas-
urements of OC and EC separately. In this way, 
EC may be directly apportioned between fossil-
fuel combustion and biomass burning, and the 
fossil-fuel combustion contribution to OC may 
be also directly obtained; provided that the OC/
EC emission ratio for wood/biomass burning is 
known. This model is limited by the uncertainty 
regarding the knowledge of the OC/EC emission 
ratio for wood/biomass burning and by the diffi-
culty in the assessment of the secondary contri-
bution of this source (Szidat et al., 2009), as the 
OC/EC emission ratio measured at the source 
cannot correctly account for secondary aero-
sol formation. Moreover, this method requires 
an effective physical isolation of the two car-
bonaceous fractions (Andersson et al., 2011; 
Bernardoni et al., 2013; Calzolai et al., 2011; 

Heal et al., 2011; Szidat et al., 2004, 2009; 
Zencak et al., 2007; Zhang et al., 2012), which 
are operationally defined quantities. Indeed, the 
analytical separation of OC from EC using ther-
mal protocols is ambiguous because part of the 
OC can pyrolyse, especially in an oxygen-poor 
atmosphere, and some of this EC can evolve in 
the presence of oxygen (Watson et al., 2005). It 
is also noteworthy that water-soluble organic 
carbon (WSOC) is particularly prone to pyroly-
sis and that soluble inorganic compounds can 
catalyse EC pre-combustion (Chow et al., 2001; 
Novakov and Corrigan, 1995; Wang et al., 2010; 
Yu et al., 2002).

Recent literature has attempted a natural/
anthropogenic source apportionment, coupling 
14C measurements of TC with the analysis of 
other micro and macro tracers (Gelencsér et al., 
2007; Gilardoni et al., 2011; Holden et al., 2011; 
May et al., 2009; Yttri et al., 2011a, 2011b). A 
number of tracers and emission factors have 
been employed in these studies: levoglucosan 
as tracer for biomass combustion together with 
OC/levoglucosan and OC/EC emission ratios; 
carbon monoxide as tracer for primary fossil-
fuel combustion together with the OC/EC emis-
sion ratio; cellulose for plant debris together 
with the OC/cellulose ratio; arabitol and man-
nitol saccharide concentrations as tracers of 
fungal spores. In these papers, marker concen-
trations, emission ratios and their uncertain-
ties were used to estimate possible ranges of 
source contributions identified by modelling 
techniques.

carbonaceous organic/elemental primary/secondary
fossil, biomass, 
burning, biogenic

how is it estimated?

Total carbon 
(TC)

Elemental carbon 
(EC)

(only primary)

Fossil fuel (ECFF)
by subtracting ECBB 
from measured EC

Biomass burning 
(ECBB)

from OCBB and the OC/
EC emission ratio for 
wood burning

Organic carbon 
(OC)

Primary organic 
carbon (POC)

Fossil fuel (OCFF)
from ECFF and the OC/
EC ratio for fossil-fuel 
combustion

Biomass burning 
(OCBB)

from levoglucosan and 
the OC/levoglucosan 
ratio for wood burning

Biogenic (OCBIO)
derived from cellulose 
and the OC/cellulose 
emission ratio

Secondary organic 
carbon (SOC)

Fossil fuel (SOCFF) using the radiocarbon 
measurement of TCBiomass burning 

(SOCBB)
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In the work by Gelencsér et al. (2007), meas-
urements of EC, OC, levoglucosan, cellulose and 
fm(total carbon) are used for TC apportionment 
in the following basic classes (Table C4.1): EC 
from fossil fuel combustion (ECFF) and from 
biomass burning (ECBB), POC from fossil fuel 
combustion (OCFF), biomass burning (OCBB) and 
biogenic  sources (OCBIO), and SOC from precur-
sors emitted by fossil and non-fossil sources. 
Briefly, OCBIO is derived from cellulose and the 
OC/cellulose emission ratio; OCBB from levoglu-
cosan and the OC/levoglucosan ratio for wood 
burning; ECBB from OCBB and the OC/EC emis-
sion ratio for wood burning; ECFF by subtracting 
ECBB from measured EC; OCFF from ECFF and the 
OC/EC ratio for fossil-fuel combustion. SOC is 
grouped as fossil and non-fossil using the radi-
ocarbon measurement of TC. 

This method involves many steps, each of 
which has substantial uncertainty, mainly due 
to the high variability of emission ratios: to 
tackle the multitude of possible combinations 
of these uncertainty parameters, a statistical 
approach, the Latin-hypercube sampling meth-
od, was used. A very similar approach is used 
by Gilardoni et al. (2011). In this case, howev-
er, the estimation of the primary biogenic OC 
contribution is based on the measurements of 
arabitol and mannitol saccharides, assuming 
that fungal spores dominate primary biological 
aerosol particles in PM2.5. A Quasi-Montecarlo 
approach is used to determine the most prob-
able contributions of the different source cat-
egories and the associated uncertainties.

In other works (Bernardoni et al., 2013; 
Minguillon et al., 2011; Heal et al., 2011; Aiken 
et. al., 2010), source apportionment based on 
fm measurements of OC and EC fractions is 
reinforced/compared with other approaches, 
such as the levoglucosan-tracer method, PMF-
Aerosol Mass Spectrometry, PMF-offline filter 
dataset and Chemical Mass Balance of Organic 
Molecular Markers. In Bernardoni et al. (2013) 
and Minguillon et al. (2011), the fossil OC is also 
apportioned into primary and secondary contri-
butions; moreover, a further apportionment of 
the non-fossil OC is performed in order to take 
into account modern contributions to OC other 
than wood burning and biogenic aerosols (e.g. 
cooking, tyre wear). In particular, in Bernardoni 
et al. (2013) the fossil fuel combustion contri-
bution to OC is split into primary and second-
ary components using the EC-tracer method 
(Turpin and Huntzicher, 1995) which uses PMF-
derived emission ratios, while the non-fossil OC 
is grouped into primary OCBB, secondary OCBB, 
OCBIO and OC from other urban modern sourc-
es, according to emission ratios and literature 
approaches.

It should be noted that these recent proba-
bilistic uncertainty characterisations have 
demonstrated that results obtained with such 
trace-based methods may have high uncertain-
ties (Larsen et al, 2012). 

Finally, it is also worth mentioning that radio-
carbon analyses are extremely time-consuming 
and expensive, due to the procedures for sample 
preparation and to the need for an Accelerator 
Mass Spectrometry system to determine the 
radiocarbon concentration. Such features limit 
the number of samples that can be character-
ised and, therefore, the representativeness of 
the obtained data. Nevertheless, some steps to 
overcome such limitations have been recently 
taken by coupling a commercial EC/OC analyser 
with an Accelerator Mass Spectrometry system 
(Perron et al., 2010).
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C5.  CONSTRAINED AND EXPANDED MODELS IN 
FACTOR ANALYSIS 

Common Positive Matrix Factorization (PMF) 
analysis fits the data into a limited bilinear 
model. However, PMF also permits the develop-
ment of more complex mathematical models 
to account for physical and chemical informa-
tion when fitting the data. “Constrained” and 
“Expanded” PMF models represent the advanced 
tools in receptor modelling, and efforts are 
being made to improve and increase their capa-
bilities. Today they feature in less than 10 % of 
published studies, but this percentage is likely 
to increase in the near future. 

Since this is a new field of research, the termi-
nology is still evolving in the literature and the 
distinction between Constrained and Expanded 
models is not very well defined yet. In this doc-
ument, Constrained models are considered a 
subcategory of Expanded (or Extended) mod-
els. More precisely, Constrained models are 
those in which additional constraints are intro-
duced (in most cases after an initial run, the 
results of which are used as a starting point), 
while Expanded models are those in which the 
customary bilinear equation is augmented by 
another more complicated set of equations, 
depending on the aims of the study.

Constrained PMF

By definition, the Positive Matrix Factorization 
model is a weighted least squares analysis 
where the object function is minimised under 
the constraint that all or some of the elements 
of G and F are constrained to non-negative val-
ues (Paatero, 1997). Therefore, all PMF studies 
are constrained. Nevertheless, recent literature 
uses the term ‘constrained’ to refer to more 
complicated PMF models, where the constraint 
is not limited to non-negativity. 

Different types of constraint can be imple-
mented in PMF, but they must all derive from 
some a priori knowledge of the user about the 
system that is to be modelled. This knowledge 
can be of physical or chemical origin (Amato et 
al., 2009). Physical constraints can relate, for 
example, to the mass conservation principle 

(e.g. the sum of factor profiles cannot exceed 
unity; the lower the particle size, the lower the 
source contribution, etc.). On the other hand, 
chemical information is associated with source 
profiles. The relative abundance of some ele-
ments/compounds may already be known and 
can represent valuable information for the 
model in order to find a better solution, reduc-
ing the number of possible alternatives (the 
‘rotational ambiguity’). Another example of a 
priori knowledge is the information about peri-
ods during which a specific point source is not 
operative. These data can be useful constraints 
to drive the model towards a more realistic 
solution by setting the emission of that source 
to zero.

The choice of the program to use in perform-
ing a Constrained PMF depends on the type of 
constraint to be used:

• PMF2 implements only the Fkey and Gkey 
constraints, which consist of binding indi-
vidual elements of the F and G matrices, 
respectively, to zero. Gkeyik and Fkeykj are 
two matrices of the same shapes as G and 
F respectively. They are applied a posteriori 
(in a ‘continuation run’ that takes place after 
the base run) and each element of the matrix 
with a key value >1 is bound to zero, with 
an increased strength of the bond for high-
er key values. It is not possible to bind ele-
ments to non-zero values. Both constraints 
are imposed regardless of changes in the Q 
value, i.e. they are considered to be “hard” 
constraints.

• ME-2 (Multilinear Engine) is a special-pur-
pose programming language, which allows 
for the incorporation of any additional con-
straints that are introduced by the user into 
the script (Paatero, 1999; Paatero and Hopke, 
2009; Amato et al., 2009; Amato and Hopke, 
2012). The constraints can be introduced in 
terms of pulling equations, upper/lower lim-
its and fixed values. Pulling equations are 
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weighted by uncertainties, which express the 
confidence of the user in the equation. A low-
er uncertainty corresponds to a harder pull-
ing effect. Each pulling equation is converted 
into an auxiliary term of the object function 
to be minimised. 

• EPA PMF v5.0 includes a user-friendly inter-
face for introducing constraints in several 
ways:
-  Ratios of F elements (e.g. Sisoil/Alsoil=3.2)

-  Mass Balance between F elements 
of the same or different factors 
(e.g. Fediesel=2.5 Fegasoline)

-  Custom expression, where the user can 
build any kind of equation on F and G ele-
ments about which he/she is confident (e.g. 
Gsmelter=0 from August to December 2008)

When F and/or G elements are set to zero or 
confined to upper/lower limits, the constraints 
are “hard” or imposed without regard to the 
change in the Q value. Equations constraining 
variables towards a value, upwards or down-
wards, are classified as “soft” pulling, and their 
strength (based on the confidence of the user) 
is expressed by the limit of change allowed in 
the Q value. A higher dQ will determine a harder 
constraint. 

Once the constraints are applied in a continua-
tion run, the user should look at the deviations 
in the results between the two model runs and 
examine the impact of the constraints on:

• Achievement of the target values (within the 
uncertainty range in the case of ME-2)

• The increase of dQ

• Correlations between factor profiles and ref-
erence source profiles

• Changes in G-space plots

• Possible distortions in all factors and source 
contributions

• Possible factor swaps, so that identities of 
factors have changed. Such swaps cause the 
constraints to act on physical factor(s) that 
are different from those originally intend-
ed, so the constraints are meaningless. For 
details, see Paatero et al. (2013).

Sensitivity tests, carried out modifying the 
strength of pulling equations can be useful for 
a comprehensive evaluation of the model out-
put (Viana et al., 2009; Brown et al., 2012).

Expanded PMF 

As already mentioned, the Multilinear Engine 
(ME-2) has been used to constrain PMF pro-
files and contributions. However, the flexible 
structure of ME-2 makes it suitable for solving 
any other complex problems such as expanded 
models. ME-2 has been applied to several data-
sets for multiple purposes. 

In general, the expanded models were found 
to give similar source contributions and source 
profiles when compared with the original PMF 
analyses, but also provided information asso-
ciated with the meteorological and temporal 
conditions. In some cases, the expanded model 
provided additional resolution of sources: Kim 
et al. (2003) were able to resolve diesel and 
gasoline emissions using the expanded model 
when they had been unable to do so with the 
basic bilinear factor analysis model. However, 
much more equivocal results were obtained for 
Washington, DC relative to the prior PMF analy-
ses (Begum et al., 2005). 

Zhao et al. (2004) developed a novel factor 
analysis model, in which the normal chemical 
mass balance model was augmented by a par-
allel equation that accounted for wind speed and 
direction, temperature, and weekend/weekday 
effects. The model was fitted with a multilinear 
engine (ME) to provide identification and appor-
tionment of the VOC sources in Houston during 
the Texas Air Quality Study (TexAQS) 2000. The 
analysis determined the profiles and contribu-
tions of nine sources and the corresponding 
wind speed, wind direction, temperature, and 
weekend factors. The reasonableness of these 
results suggested the high resolving power of 
the expanded factor analysis model for source 
apportionment, but also provides novel and 
effective auxiliary information for more specific 
source identification. This study demonstrates 
the feasibility of the expanded model to identify 
sources in complex VOC systems. 

Zhou et al. (2009) developed an expanded model 
to investigate the effect of wind direction, wind 
speed, seasons, and weekdays/weekends in the 
Cleveland (Ohio, USA) area. The expanded model 
and PMF2 produced essentially the same results 
with only minor differences being observed 
between the two sets of profiles and contributions. 
Thus, the addition of meteorological and tempo-
ral parameters to the model did not improve the 
source resolution. Zhao and Hopke (2006) followed 
a similar approach in Indianapolis and conclude 
that PMF coupled with a posteriori back-trajectory 
analysis (such as CPF, PSCF, seasonal variation 
analysis, and weekday/weekend variation analy-
sis) yields comparable results to expanded factor 
analysis and is simpler to employ. 
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New monitoring technologies permit the meas-
urement of a variety of chemical species with 
time resolution as high as 10 minutes to one 
hour. However, most species are still measured 
with longer integration periods such as several 
hours to a day. Traditional factor analysis tech-
niques (PCA and customary PMF) are unable to 
analyse datasets consisting of different time 
scale measurements. Zhou et al. (2004) devel-
oped an expanded PMF model which can use 
each data value (of a mixed time-resolution 
dataset) in its original time schedule without 
averaging or interpolation. Averaging the high 
time-resolution data leads to a loss of valuable 
temporal information, while interpolating the 
low time-resolution data produces unreliable 
high-resolution series. The contribution series 
are smoothed by the regularisation of auxil-
iary equations especially for sources containing 
very little high-resolution species. Similar study 
designs were followed by Ogulei et al. (2005) 
and Zhao et al. (2004).

An expanded receptor model was applied to 
identify and apportion the PM2.5 sources that 
were common to three different environments 
(personal, indoor and outdoor) and to which 
asthmatic children were exposed (Zhao et al., 
2007). Two types of sources (factors), exter-
nal and internal, were defined – the external 
sources were left free to contribute to all three 
environments while the internal sources were 
constrained to only contribute to the personal 
and indoor samples. The expanded receptor 
model was expressed as:

(t=1 for personal; t=2 for indoor)

        
(t=3 for outdoor)

where i is the individual index, j the species 
index, d the sampling date index, t the type 
index, N the number of external sources, and H 
the number of internal sources. xijdt denotes the 
concentration of species j in the sample of type 
t collected by subject i on date d, gipdt denotes 
the contribution of source p to the sample of 
type t collected by subject i on date d, and fjp 
denotes the relative concentration of species j 
in source p. Further information is available in 
Hopke et al. (2003) and Zhao et al. (2006).

This approach was able to resolve four exter-
nal (sulphate, soil, nitrate and traffic) and three 
internal (chlorine-based cleaning, cooking, 
tobacco) sources. Strict bilinear (PMF2) and 
trilinear models (PMF3) were also applied to 

indoor-outdoor-personal samples (Larson et 
al., 2006).

Pere-Trepat et al. (2007) analysed data that 
combined particle size and composition data 
using an expanded PMF model to permit the 
extraction of maximal information from size-
segregated aerosol composition data. This 
three-way model accounts for the variation in 
the composition of the source emissions in the 
different size ranges (three-stage DRUM impac-
tor; Pere-Trepat et al., 2007). The data are 
three-way in that their size and composition 
are measured over time. Three-way data have 
been also analysed by means of the stricter tri-
linear PARAFAC model (Yakovleva et al., 1999; 
Hopke et al., 2003), which does not offer the 
flexibility of ME-2. 

With the ME-2 approach (Pere-Trepat et al., 
2007), each profile is a matrix of mxn dimen-
sion where m is the number of measured 
variables and n the number of measured size 
fractions. The profiles are then a three-dimen-
sional array of source by composition by size. 
For each source (factor), there is a vector of 
mass contributions, so combining them produc-
es a matrix whose dimensions are defined by 
the number of sampling days by the number of 
sources (factors).

This model evolved from the Tucker 1 model 
(Tucker, 1966). This model is logically a two-
way model, but is organised as a three-way 
array with data also in a three-way array, X. 
The main equation of the model is as follows:

 

(i,j,k) is the three-way array of observed data,   
 represents a Kronecker product of the (i,j,k) 

with the contribution matrix A(i,p) and (i,j,k) is 
a three-way array of residuals (Pere-Trepat et 
al., 2007). 

Developing new models using ME-2

As already mentioned, new models can be 
developed by modifying existing ME-2 scripts, 
or by writing entirely new ones. Due to the diffi-
culties normally encountered in debugging new 
scripts, practitioners are advised to use existing 
code as much as possible. To that end, devel-
opers are encouraged to obtain information on 
existing script material, preferably in the early 
stages of their work. In this way, they also con-
tribute to guiding the future development of 
ME-2 in directions that are most useful for the 
further development of the source apportion-
ment methods.
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Abstract

This report contains a guide and a European harmonised protocol for the identification of air pollution sources using receptor 

models. The document aims at disseminating and promoting the best available methodologies for source identification and at 

harmonising their application across Europe. It was developed by a committee of leading experts within the framework of the 

JRC initiative for the harmonisation of source apportionment that has been launched in collaboration with the European networks  

in the field of air quality modelling (FAIRMODE) and measurements (AQUILA). 
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of complexity that make it accessible to readers with different degrees of familiarity with this topic, from air quality managers to 

air pollution experts and modellers.
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