
Technical Challenges in Air Quality Monitoring Quality Control/Quality Assurance

Judith C. Chow (judith.chow@dri.edu) John G. Watson Richard J. Tropp Desert Research Institute Reno, Nevada, USA

Presented at: Better Air Quality Symposium on "Improving Air Quality Monitoring Systems in Asia" Hong Kong, SAR

December 4, 2012

QC and QA quantify	the four attributes of each air quality
	measurement
• Value (<i>C_m</i>):	Measured value of observables
• Accuracy (A): $A(\%) = \frac{100(C_m - C_t)}{C_t}$	The degree of correctness with which a measurement system yields the true value of observables
• Precision (S_m) : $S_m = \sqrt{\frac{\left[\sum_{i} (C_i - AvgC_i)^2\right]}{(n-1)}}$	The standard deviation of repeated measurements of the same observable with the same measurement method
• Validity:	Evaluation of the extent to which procedures were followed, application of internal/external consistency tests, assignment of validity flags, and removal of invalid measurements
* C_i is the i th measurement of observable C Avg C_i is the average concentration of the i	measurement of Cx Watson et al., 2001

SOPs should prescribe and describe the measurement process

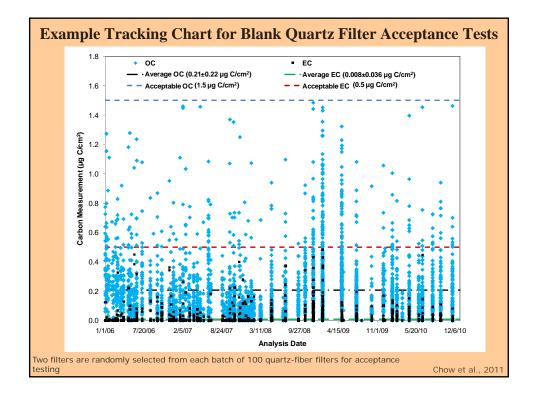
- Brief summary of the measurement method, its principles of operation, expected accuracy and precision, and the assumptions which must be met
- List materials, equipment, reagents, and suppliers. Specifications are given for each expendable item
- Designation of the individual responsible for each part of the procedure
- General traceability path, the designation of primary standards or reference materials, tolerances for transfer standards, and a schedule for transfer standard verification
- Start-up, routine, and shut-down operating procedures and an abbreviated checklist
- · Copies of data forms with examples of filled-out forms
- Routine maintenance schedules, maintenance procedures, and troubleshooting tips
- Internal calibration and performance testing procedures and schedules
- External performance auditing schedules
- References to relevant literature and related standard operating procedures

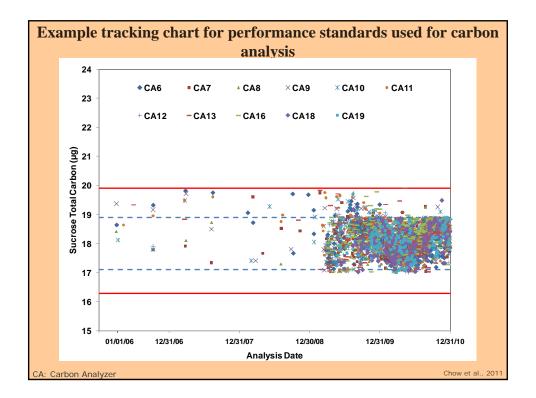
Watson et al., 200

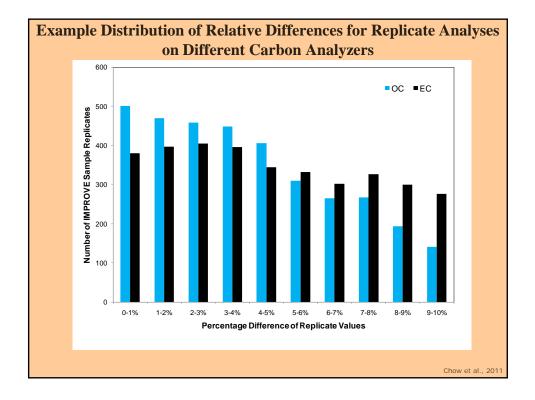
				F		Phase II QAPP exision 1 (6:01)				Fremo Supersite Ph	ase II QAJ sion 1 (60
						Page 37 of 89					age 46 of
							Ta	ble 2-3	Summary of Laboratory-relat	ed SOPs	
able 2-1.	Summary of SO	Ps Applied to Fresno	Supersite Field Measurements					DRI			Date
				Date of			5	07	Observable Method	Title	ofLau
IOP No.	Measurement(s)	Instrument	SOP Title	Last Existing	Primary Source(s)	Status		Ne. 101.1	TSP and PM ₁₀ mass	Gravimetric Analysis, Processing, and Documentation of 8"X10" Glass Fiber Fibers	Revisio
Gases							2.1	102.3	PM mass	for Hi-Vol Sampling Gravimetric Analysis Procedures	\$30.94
GAS001	Nitrogen Oxides	(TECO) 42 w.	TECO 42 Oxides of Nitrogen Analyzer	08/01/94	ARB SOP	Follow ARB			PM15FRM mass	PM21 FEM GEVERATE Analysis	3/1/99
	(NO NO_)	internal TEI			#W.1, W.2, and W.3	procedure			Light transmission	Light Transmission Analysis Procedure	\$/3.90
GA5002	Occae (03)	API 400	API Model 400 Ozone Azalyzer	10/02/00	800 W.3	Follow STI			Nylon filter pretrestment	Preparation of Nylon Filters for Nitric acid or Total Nitrate Sampling	4th qtr 1
	inses and Particles	10.00.0000		Laborent			2.	106.3	Quartz-fiber filter pretreatment	Pre-firing of Quartz Fiber filters for Carbonaceous Material Sampling	12/23/5
6.G001	Particle-bound PAH	EcoChem Analytics PAS2000	Operation of EcoChem Analytics PAS 2000 Analyzer	03/16/00	DR1 SOP #1-110.0	Revision 0 of			Sectioning of filters	Sectioning of Tetlon and Quartz Filter Samples	2nd qtr
	ros	roading			#1-120.0	Supersite			Ionic species filter extraction	Extraction of Ionic Species from Filter Samples	\$\$90
						format	2.	110.4	Filter pack processing	Filter Pack Assembling, Disassembling, and Cleaning Procedure	11/249
07.0002	Tenic hydrocarbons	Xontec 910A canister sampler	Gaseous Toxic Sample Xontech Model 910A	03/01/96	ARB	follow AFB procedure	2-	111.4	Filter pack shipping and receiving	Sample Shipping, Receiving, and Chain-of- Custody	11/245
	ase Management						2.	112.1	PM25FRM filter pack processing	PM23 FEM Filter Pack Assembly, Disassembly, and Cleaning	3/1/99
DBM001	Meteorological and continuous		Meteorological and Continuous Gaseous Data Processing and Validation	12/31/94	DR1 SOP #3-109.2	Follow DRJ procedure	2-	13.1	PM23 FRM shipping and receiving	PM11FRM Sample Shipping, Receiving, and Claim-of-Custody	3/1/99
	gateous data processing						24	203.4	CI", NO ₅ ", SO4"	Analysis of Filter Extracts and Precipitation Samples by Ion Chromatography	4th qt 9
DBM002	Data processing and validation		Data Processing and Validation	12/91/94	DR1 SOP #3-003.4	Follow DRI procedure	24	204.4	OC and EC in seven fractions	Thermal Optical Redectance Casbon Analysis of Aerosol Filter Samples	6/1/00
	1						24	205.2	40 elements from Na to U	X-ray Fluorescence (XRF) Analysis of Aerosol Filter Samples	9/22/90
							2.5		Na', K'	Analysis of Filter Extracts and Precipitation Samples by Atomic Absorption Spectroscopy	4th qtt 9
									NH4" or NH5 as NH4"	Analysis of Filter Extracts and Precipitation Samples by Automated Colorimetric Analysis	11/20/9
							27	203.1	Volatile organic compounds (C ₂ -C ₁₂)	Analysis of VOC in Amhient Air by Gas Chrometography with Cytogenic Concentration	7/2/98
							24	704.1	Volatile organic compounds (C ₂ -C ₂₂)	Analysis of VOC in Ambient Air by Gas Chromatography and Mass Spectrometry	7/2/98
									Carbonyis	Analysis of Carbonyl Compounds by High Pressure Liquid Chromatography	7.9.98
									Heavy hydrocurbons (C_0,C_{20})	Analysis of C ₄ to C ₄₀ Volatile Organic Compounds on Tenx by Gas Chromatography with FID or MSD FTIR Detection	9/21/9
							2.5	750.1	Semi-volatile ormnic compounds	Analysis of Semi-Volatile Organic Compounds	6249

Systems Audit

- Conducted annually by independent/external personnel.
- Review measurement and data processing to ensure SOPs define valid measurement methods and procedures are implemented in practice.
- Review of the measurement system:
 - Facilities
 - Station and siting sensor
 - Equipment
 - Personnel and training
 - Standard operating procedures (SOPs)
 - Record keeping (chain-of-custody)
 - Data validation and data management
 - Reporting


Performance Audit Conducted biannually or quarterly with independent/external personnel, equipment, and standards. Verify data accuracy, precision, and detection limits for sampler, analyzer, and measurements. Challenge the measurement system with independent standards or methods. Assess out-of-control sensors. Identify bias of sensor or network. May include interlaboratory comparison and/or multiplooratory performance testing.


		rs	ito	Ion	s N	ou	nu	nti	Coi	(
se II Q/ ion 1 (6 ge 50 o		Fresno				Supersite	the Fresno	tivities at	urance Ac	le 2-6. Quality Asso
Audit by	Performance Audit Frequency	Performance Audit Standard	Performance Test Frequency	Performance Test Standard	Calibration Frequency	Calibration Standard	Primary Standard	Instrument	Percent Tolerance	Observable (Method)
ARB	Yearly	Certified NO mixture and dynamic dilution	Daily	Span with certified NO and zero with scrubbed air	Quarterly or when out of spec	Certified NO mixture and dynamic dilution	NIST- traceable NO mixture	TEI 42	±10%	NO:NO _n (chemiluminescence)
ARB	Yearly	Dasibi 1008 with temperature and pressure adjustments	Daily	Span with internal ozone generator and zero with scrubbed air	Quarterly or when out of spec	Dasibi 1003AH UV photometer	ARB Primary UV Photometer	API 400	=10%	O ₃ (UV absorption)
ARB	Yearly	Certified CO mixture and dynamic dilution	Daily	Span with certified CO and zero with scrubbed air	Quarterly or when out of spec	Certified CO mixture and dynamic dilution	NIST- traceable CO mixture	Dasibi 3008	±10%	CO (infrared absorption)
ARB	Yearly	Certified HC gas dilution	Daily	Span with certified HC and zero with scrubbed air	Quarterly or when out of spec	Certified HC gas dilution	NIST- traceable HC mixture	TEI 55C	=10%	NMHC (flame ionization)
CRPAQ CE CER	3 times over 3 years	Certified NO mixture and dynamic dilution	Weekly for HNO ₃	Span with certified NO and HNO, perm tube and zero with scrubbed air	Quarterly or when out of spec	Certified NO missture and dynamic dilution	NIST- traccable NO mixture	TEI 42CY * UC Riverside Lumiinol	±20%	NO ₂ , HNO ₃ , NO ₂ , PAN (chemiluminescence and Luminol)
CEPAQS CE-CER	3 times over 3 years	Certified NO mixture and dynamic dilution	Daily	Span with certified NO and zero with scrubbed air	Quarterly or when out of spec	Certified NO mixture and dynamic dilution	NIST- traceable NO mixture	TEI 17C *	#20%	NH3 (chemiluminescence)
										Iter Mass and Chemistry
ARB	Yearly	Calibrated orifice/ roots meter	Monthly	Calibrated orifice	Quarterly	Calibrated orifice/ roots meter	Spirometer (>1,000 L/min)	General Metal Works	±5%	TSP mass (high-volume sampler)
ARB	Yearly	Calibrated orifice/ roots meter	Monthly	Calibrated orifice	Quarterly	Calibrated orifice/ roots meter	Spirometer (>1,000 L/min)	Andersen	±5%	PM ₁₀ mass (hivol SSI sampler)
ARB	Yearly	Mass flowmeter	Monthly	Calibrated bubblemeter	Quarterly	Mass flowmeter/ bubblemeter	NIST-certified bubblemeter (1-25 L/min)	Andersen	±5%	PM2.5 and coarse mass, elements, elements, endotoxins, spores, mold, and fungi (collocated dichotomous (samplers)


	Requirement	Calibration Standard and Range	Calibration Frequency ^b	Acceptance Criteria	Corrective
	System Blank Check	NA ^a	Beginning of analysis day.	≤0.2 µg C/cm ² .	Check instrument and filter
	Leak Check	NA	Beginning of analysis day.	Oven pressure drops less than 0.52 mm Hg/s.	Locate leaks and fix.
	Laser Performance Check	NA	Beginning of analysis day.	Transmittance >700 mV; Reflectance >1500 mV	Check laser and filter holder position.
Example of	Calibration Peak Area Check	NIST 5% CH ₄ /He gas standard; 20 µg C (Carle valve injection loop, 1000 µl).	Every analysis.	day.	Void analysis result and repeat analysis with second filter punch.
QA/QC	Auto-Calibration Check	NIST 5% CH ₄ /He gas standard; 20 µg C (Carle valve injection loop, 1000 µl).	Beginning of analysis day.	95-105% recovery and calibration peak area 90- 110% of weekly average.	Troubleshoot and correct system before analyzing samples.
Activities for	Manual Injection Calibration	NIST 5% CH ₄ /He or NIST 5% CO ₂ /He gas standards; 20 µg C (Certified gas- tight syringe, 1000 µl).	End of analysis day.	95-105% recovery and calibration peak area 90- 110% of weekly average.	Troubleshoot and correct system before analyzing samples.
	Sucrose Calibration Check	10µL of 1800 ppm C sucrose standard; 18 µg C.	Thrice per week (began March, 2009).	95-105% recovery and calibration peak area 90- 110% of weekly average.	Troubleshoot and correct system before analyzing samples.
Laboratory Analysis	Multiple Point Calibrations	1800 ppm C Potassium hydrogen phthalate (KHP) and sucrose; NIST 5% CV ₄ /He, and NIST 5% CO ₂ /He gas standards; 9-36 µg C for KHP and sucrose; 2-30 µg C for CH ₄ and CO ₂ .	Every six months or after major instrument repair.	All slopes ±5% of average.	Troubleshoot instrument and repeat calibration until results are within stated tolerances.
(IMPROVE Carbon Measurement)	Sample Replicates (on the same or a different analyzer)	NA	Every 10 analyses.	$\pm 10\%$ when OC and TC $\geq 10 \mu g C/cm^2$ $\pm 20\%$ when EC $\geq 10 \mu g C/cm^2$ or $<\pm 1 \mu g/cm^2$ when OC and TC <10 $\mu g C/cm^2$ $<\pm 2 \mu g/cm^2$ when EC <10 $\mu g C/cm^2$	Investigate instrument and sample anomalies and rerun replicate when difference is > ±10%.
	Temperature Calibrations	Tempilaq® G (Tempil, Inc., South Plainfield, NJ, USA); Three replicates each of 121, 184, 253, 510, 704, and 816 °C.	Every six months, or whenever the thermocouple is replaced.	Linear relationship between thermocouple and Tempilaq® G values with R ² >0.99.	Troubleshoot instrument and repeat calibration until results are within stated tolerances.
	Oxygen Level in Helium Atmosphere (using GC/MS) ^c	Certified gas-tight syringe; 0-100 ppmv.	Every six months, or whenever leak is detected.	Less than the certified amount of He cylinder.	Replace the He cylinder and/or O2 scrubber.
	Interlaboratory comparisons	NA	Once per year.	NA	Review and verify procedures.
	External systems audits	NA	Once every two to three years.	NA	Take action to correct any deficiencies noted in audit report.
 ^a NA: Not Applicable. ^b Calibration performed by carbon analyst, except fo U.S. Environmental Protection Agency (EPA) Nation ^c Gas chromatography/mass spectrometer (Model 5) 	hal Air and Radiation	Environmental Labor	atory (NAREL).		y the et al., 2007, 2011

Example of Laboratory Data Validation Flags

Lab flag	Explanation
_	Indicates no flags. Used to remove null flag fields in queries
b	Blank
b1	Field/dynamic blank
b2	Laboratory blank
b3	Distilled-deionized water blank
b4	Method blank
b5	Extract/solution blank
b6	Transport blank
С	Analysis result reprocessed or recalculated
c1	XRF spectrum reprocessed using manually adjusted background
d	Sample dropped
f	Filter damaged or ripped
f1	Filter damaged outside of analysis area
f2	Filter damaged within analysis area
f3	Filter wrinkled
f4	Filter stuck to PetriSlide
f5	Teflon membrane separated from support ring
f6	Pinholes in filter
g	Filter deposit damaged
g1	Deposit scratched or scraped, causing a thin line in the deposit
g2	Deposit smudged, causing a large area of deposit to be displaced
g3	Filter deposit side down in PetriSlide
g4	Part of deposit appears to have fallen off; particles on inside of PetriSlide
g5	Ungloved finger touched filter
<u>g</u> 6	Gloved finger touched filter

Conclusions

- QC and QA are essential components of air quality measurement programs
- QC and QA data allow the precision, accuracy, and validity of air quality data to be quantified and expressed
- Greater resources must be directed toward QC and QA processes for emerging air quality measurement in Asia

Hadams, N.H.; Sparks, L.E.; Ensor, D.S. (2000). Quality checks in aerosol measurements. Aerosol Sci. Technol., 32(1):26-33. http://www.tandfonline.com/doi/pdf/10.1086/027868200303000. Ohwu, J.C.; Fujita, B.M.; Watson, J.G.; Luz, Z.; Lawson, D.R.; Ashbaugh, L.L. (1994). Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study. Environ. Man. Assess., 30(1):49-80. Ohwu, J.C.; Vatson, J.G.; Luz, Z.; Lawson, D.R.; Ashbaugh, L.L. (1994). Evaluation of filter-based aerosol measurements entends to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manage. Assoc., 45(5):320-382. http://pubs.awma.org/assarch/Journal/1995/J45.05. 220.pdf. Ohwu, J.C.; Watson, J.G.; Kohl, S.D.; Conzi, M.P.; Chen, L.-W.A. (2002). Measurements and validation for the twelve month particulate rothic sing song: http://www.epd.gov.hk/epd/english/environmentilibk/ai/studyrpts/files/final_version.hkspdfinalreport_rev12-12. U.2. dd. Ohwu, J.C.; Watson, J.G.; Robles, J.; Wang, X.L.; Chen, L.-W.A.; Trinble, D.L.; Kohl, S.D.; Tropp, R.J.; Fung, K.K. (2011). Quality sistance: and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Anal. Bioanal. Chem., 401(1):31143152. DOI 1010107/J00216-011-5103. Hauck, H.; Kromp-Kolb, H.; Petz, E. (1999). Requirements for the completeness of ambient air quality data sets with respect to derived parameters. Atmos. Environ., 33(3):2059-206. Schad, A.G. Kolb, B. (1999). Role of reference material in analysis of environmental pollutants. Sci. Total Environ., 228(2:3):243-245. Schar (1994). Q.A handbook for air pollution measurement systems: Vol. 1-A field guide to environmental Brass. Air particulate matter on fifter media. Aerosol Sci. Technol., 39(2):173-183. doi: 10.1080/027868209016453. Schar (2007). Guidance for preparing studancard operating procedures: EPA AvGo. Report